Instituto Superior Técnico

Distributed Predictive Control and Estimation

TECNICO
L ISBOA

Model Pedictive Control
Thermal Plant

José Figueiredo, jose.de.figueiredo@tecnico.ulisboa.pt, ist196259
Mariana Pires, mariana.alves.pires@tecnico.ulisboa.pt, ist1102939
Tiago Clamote, tiago.clamote@tecnico.ulisboa.pt, ist1103285

Lourengo Faria, lourenco.gouveia.faria@tecnico.ulisboa.pt, ist1103354

The group of students identified above guarantees that the text of this report and all the
software and results delivered were entirely carried out by the elements of the group, with
a significant participation of all of them, and that no part of the work or the software and re-
sults presented was obtained from other people or sources.

2023,/2024



Model Predictive Control ECPD

Index
1 Introduction 1
2 (P1) Basics on constrained optimization 1
2.1  Unconstrained minimization for Rosenbrock function . . . . . . . ... ... ... ... .. 1
2.2 Constrained minimization for Rosenbrock function . . . . . . .. ... .. ... ... ... 1
2.3 Plots . . . o . e 2
3 (P2) Basics on receding horizon control 3
3.1 Optimal LQ gain . . . . . . . . oL e 4
3.2 Optimal RH gain . . . . . . . . 4
3.3 Open-loop Ist order plant . . . . . . . . . . L 6
4 (P3) Model identification 8
4.1 First experiment: . . . . . . . Lo 8
4.2 Second experiment: . . . . . ... .. 8
4.3 Third experiment: . . . . . . . ... e 9
5 (P4) MPC and Kalman filter design 11
5.1 mpcssolve function . . . . ... L L 11
5.2 Closed-loop unconstrained model: . . . . . . . .. ... .. ... ... .. ... ... 12
5.3 Implementation of Constraints . . . . . . . . . . .. . L 13
5.4 Tracking With Feed-Forward . . . . . . .. ... . . ... 13
5.5 Safety constraint . . . . . . . . L 14
5.6 Kalman Filter . . . . . . . . . . . . e e 17
5.7 MPC Implementation . . . . . . . . . . .. 19
6 (P5) Application to the real system 21

Page i



Model Predictive Control ECPD

1 - Introduction

The objective of this lab project [1] was to design a model predictive controller and Kalman filter for
a real thermal plant with one input and one output. There was a need to perform a system identification
with real data, design the controller and observer for the heater in simulation, and then apply them to
the real plant. The first two parts of this laboratory work provide exercises on basic issues on function
optimization and receding horizon and predictive control.

2 - (P1) Basics on constrained optimization

The initial segment of this report delves into the exploration of two fundamental types of optimization
problems: unconstrained and constrained minimization.

e Unconstrained minimization is characterized by the pursuit of the minimum value of a function
without imposing any limitations on the variables involved. This grants the freedom to manipulate
these variables in any manner necessary to achieve the objective of minimizing the function.

e Constrained minimization searches for the minimum value of a function while adhering to
specific constraints placed on the variables. These constraints can take the form of inequalities
(such as = > 0) or equalities (ex: g(x) = 0). These constraints serve to delineate the permissible
space within which the optimization process must operate.

Understanding the minimization functions in MATLAB® is crucial, especially in the context of Model
Predictive Control (MPC), which relies on minimizing cost functions to determine the optimal control
variable for the plant.

2.1 Unconstrained minimization for Rosenbrock function

Starting with the unconstrained minimization problem for the Rosenbrock function:

f(z) =100(zo — 21%)% 4+ (1 — 1)?

The initial estimate of the minimum is:
|1
To — 1

In order to solve numerically the unconstrained optimization problem, the optimoptions MATLAB®
function was used, which required the definition of 3 parameters:

optimoptions(’ fminunc,” Algorithm', quasi — newton');

In this scenario the quasi-newton algorithm was selected, over the alternative option available for
unconstrained minimization, trust-region, since it required knowledge of the gradient, which is unknown.

Following this decision, the remaining code provided in the Laboratory Guide [1] was executed, uti-
lizing the fminunc function to solve the optimization problem with no restrictions.

Using this method, the calculated minimum was found to be %, = [1,1] which corresponds to a
value of y = 0.

2.2 Constrained minimization for Rosenbrock function

Now introducing a space restriction:

1 <05=2,-05<0

This inequality constraint transforms the problem into a constrained minimization problem, where
the constrain function is h(x) = x; — 0.5.

Thus, the fmincon function was used. This takes not only the function and the initial estimate, but
also the constraint which is described by the 2 variables A and B:

Page 1



Model Predictive Control ECPD

min  f(z)
subject to Az < B

Therefore the variables, for the defined constraint above, were defined:

A= [1 0], B=05
With the constraints, we obtained an ,,;, = [0.5,0.25] corresponding to y = 0.25.

2.3 Plots

Finally the results for both the unconstrained and constrained minimization problems were plotted.
The constrained minimum was marked with '*’, the unconstrained with 'x’ and the initial estimate with
'0’. Additionally, the constraint barrier was visually depicted as a vertical black line.

- 1200

x d 41100

<1000

800

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 1: Minimization results

This plot is a top view of Figure 2. It can be observed that the unconstrained minimum found is
outside of the constraints, meaning that the true minimum of the function requires an x outside of the
space restriction.

The presence of the black line, representing the constraint barrier, dictated that the constrained
minimum had to lie to the left of the line. Consequently, it’s clear that the constraint worked and the
minimization respected the boundary.

Finally, the function was also plotted in order to validate the results:

Page 2



Model Predictive Control ECPD

I Function 0 _—— os
[ Constraint region P 0
X Xopt unconstrained 05
Xopt constrained -05
O Initial estimation Xy < X

Figure 2: Minimization Results

The unconstrained optimization point lies within the constraint region, indicating that the solution
does not satisfy the constraints. In contrast, the constrained optimization point is situated precisely at
the boundary of the constraint region. For a clearer view, in this case, the constraint region represents
the area which the constraint point cannot fall into.

It is crucial to begin the minimization process with an estimate close to the actual minimum. This
approach significantly accelerates convergence. Moreover, if the initial estimate is too distant from the
true minimum, the process might fail to converge, potentially resulting in a ”false minimum.”

For instance, if we choose an initial estimate of 2o = [—4000,4000], MATLAB® returns an optimal
solution of xop = [—69.3848,4000.1], which is evidently incorrect. MATLAB®’s message indicates that
the solver stopped because the size of the current step was less than the optimal tolerance, suggesting
that the true minimum was not found.

3 - (P2) Basics on receding horizon control
This section of the report begins with an analysis of the following open-loop unstable first-order plant:

x(t+1) =1.22(t) + u(t) (3.1)

Considering the state-space notation:

(3.2)

z(t+1) = Ax(t) + Bu(t)
y(t) = Cz(t) + Dult)

By combining these two expressions, we can derive the system and corresponding output for the
unstable first-order plant:

{x(t—i— 1) = 1.22(t) + u(t) (3.3)

y(t) = x(t)
From which the parameters A = 1.2, B =1, C = 1 and D = 0 are obtained.

For both the infinite horizon (LQ) and the receding horizon (RH) control problems, which will be
discussed later on, the optimal control is given by the linear state feedback:

u(t) = =Ko x(t) (3.4)

Page 3



Model Predictive Control ECPD

3.1 Optimal LQ gain

The infinite horizon LQ optimal control problem involves minimizing the following unconstrained
quadratic cost over an infinite horizon:

Jro(u Zx u”'(t) Ru(t) (3.5)

Given that the input u and output y = z(¢) are scalars, and thus assuming Q = C7'C, the previously
mentioned cost function can be simplified to:

Jro(u Zy )+ Ru?(t) (3.6)

Using the previously mentioned values for A and B, and by defining the parameters R = 0.01 and
Q = 1, the optimal state feedback gain can be obtained with the help of the MATLAB® function digr:

[KLQ, S, lambda) = digr(A, B,Q, R) (3.7)

It is important to note that this command (dlgr) can only be used under specific conditions, all of
which are satisfied by the given and selected parameters: (A, B) is stabilizable, R > 0, @ > 0, and
Q=0cTcC.

For these parameters and the MATLAB® function dlgr, the value K g = 1.883 was obtained.

3.2 Optimal RH gain

The receding horizon optimal control problem involves minimizing a cost function similar to the
infinite horizon LQ problem, however it now considers a horizon of H steps.

Given a scalar input and a positive scalar weight R, along with Q = CTC, and considering all signals
as scalars, the receding horizon optimal control problem involves minimizing the following cost function:

H-1

Jra(uit) = > y?(t+i+1) + Ru’(t + i) (3.8)
1=0
As H — oo, the cost function expression simplifies to the cost function associated with the LQ gain,

as presented in equation (3.6). Therefore, for larger values of the horizon H, the optimal control gain for
the receding horizon Kgry is expected to converge to the optimal gain for the infinite horizon K¢ .

This optimal feedback gain for the receding horizon can be determined by finding the point where the
gradient of the cost function with respect to u is zero. This results in:

Krg =eg MW I12(0) (3.9)

where the matrices W, IT and M as well as the vector e; are defined in the Laboratory Guide [1].

Closed-loop optimal control gains

The following graph shows the optimal RH gain values for an R = 0.01 across different values of H.
Additionally, a line representing the LQ optimal gain is included for comparison.

Page 4



Model Predictive Control ECPD

1.1883 T

118828 F

1.18826

1.18824 - b

1.18822

1.1882 - 7

1.18818

1.18816 [ 7

1.18814

1.18812

1.1881 ‘ ‘ : ‘ ‘
0 10 20 30 40 50 60

Figure 3: Ky for different values of H and K¢q, R=0.01

When computing these gains for different values of R (0.01, 1, 10 and 100) the following results were
obtained:

12 == == Ses === === D
—6—Kg ,R=001 = — K R=001
—a—Kg, R=100 K o R =100
1+ KRH‘R=1000 KLu‘R=1000 8
o *A—KRH‘R=1OO‘OO - - KLU‘R=100‘DO
£
%0-8:[r ]
o
=
5 06 1
Q
®
a
@]
0 10 20 30 40 50 60

Horizon size

Figure 4: Kry and K g results for 4 different R values

This figure shows that for increasing values of the horizon H the optimal receding horizon gain (Kggy)
converges to the optimal infinite horizon gain (Krq), as it was previously predicted.

Lower R values correspond to higher control effort, which is reflected in higher control gains. As R
increases, indicating more penalization on control effort, the control gains decrease.

Further conclusions will be made when analysing the stability through the eigenvalues.

Closed-loop eigenvalues and stability boundary

In order to analyse the system’s stability one may substitute the expression for the optimal control
in the first equation of system (3.2):

2(t+1) = Az(t) +b[-Kz(t)] = (A—bK)x(t) (3.10)

In this expression, the use of ”b” instead of ”B” emphasizes that u is a scalar.

By leveraging this expression, an analysis of the closed-loop system’s stability can be made through
the computation of the eigenvalues of A — bk. Notably, since A — bk is a scalar, its eigenvalue directly
simplifies to the scalar value obtained from that difference.

From this equation, it can be inferred that when the absolute value of the eigenvalue exceeds one
(A —bK > 1), the magnitude of the state will progressively increase with each iteration, preventing
system stabilization. When the absolute value of the eigenvalue is less than one (A — bK < 1), the state
values will diminish over time, ultimately converging to zero. Additionally, it is predicted that higher

Page 5



Model Predictive Control ECPD

gains will lead to smaller eigenvalues. This inference is based on Figure 4, where larger R values result
in smaller gains. Therefore, it is expected that the eigenvalues will increase as R increases. However, as
concluded in the previous subsection and illustrated in the same figure, the Kry gains will converge to
the K1g gains as H increases. Thus, since the infinite horizon gains are higher, the eigenvalues will also
converge to a smaller value as the horizon increases.

The eigenvalue results are displayed in the following image:

15 T

05 JX&.» b

Maximum real part of eigenvalues

——eig o, R=001 eig o R=1.00
5 8ig, gy, R= 100 eig,, o R = 10.00
05 eig, gy R=1000 = = eig, , R=100.00] |
—A—eig,, R=10000 = = y=1
- = eig, . R=001 - y=o
- L e L e L
0 10 20 30 40 50 60

Horizon size

Figure 5: Absolute value of the eigenvalues for Kry and K¢

As anticipated, the image demonstrates that for smaller horizon values and higher R values, the
eigenvalues exceed 1, signaling instability. Hence, it’s advisable to opt for a larger horizon H, particularly
for cases like R = 100 and R = 10, to ensure system stability.

Moreover, it’s affirmed that the eigenvalues derived from receding horizon gains (Krpy) gradually
converge to those from Infinite Horizon gains (K1g)as the horizon increases. This convergence stabilizes
the system and bolsters its response speed.

In conclusion, as the horizon length (H) increases, the eigenvalues of Receding Horizon gains (Kgpy)
gradually converge to those of Infinite Horizon gains (Krq). This convergence typically ensures system
stability, except in cases of small H values combined with large R values.

3.3 Open-loop 1st order plant

Considering now the stable open-loop 1st order plant:

x(t+1) =0.82(t) + u(¢) (3.11)

Where the respective parameters are A = 0.8, B =1, C = 1and D = 0.
By repeating the same process as before, the graphics for the optimal control gains for both the infinite
horizon and receding horizon problems were obtained:

Page 6



Model Predictive Control ECPD

—o—Kg R=001 — — K R=001 1 - - - -
07t 5 Kgy R=100 K o R =100
Keyy: R = 1000 K, g R=1000 @ 08

—A—Kg R=10000 — — K o R=100.00 =}
wn 06 © 06
£ Z
[l 9]
Dost g 048,
<] [
= 4= 021
S 04 5]
8" t
= @ 0
g 03 =
g 03¢ © L
= g -0.2
o L
O o2t g 04F —o—eigyg, R=001 €igy o R=100

E o6l 5 eigy g, R=1.00 €ig, o R = 1000
041 x 9 €igp R=1000 = — eig, o R=100.00
S osl —A—eigy R=100.00 = = y=1
o : - = eig o R=001 = =y
0 10 20 30 40 50 60 -1 g - g - 5
. . 0 10 20 30 40 50 60
Horizon size X .
Horizon size

Figure 6: Krpy and Kpq results for 4 dif-

Fi . Ei 1
ferent R values igure 7: Eigenvalues

From Figure 6, similar to the unstable plant case, it is observed that the Kry optimal gain converges
to the K¢ optimal gain as H approaches infinity. Additionally, higher R values result in smaller optimal
gains for both the infinite and receding horizon cases, while conversely, smaller R values lead to higher
optimal control gains.

Figure 7 shows that increasing the value of H makes the system’s response faster, though the effect
is less pronounced compared to the previously studied plant, as this plant is already stable (eigenvalues
with magnitudes less than 1).

The impact of adjusting parameters such as R are also important to consider. Increasing R imposes
a penalty on larger control signals, which reduces the energy used by the controller but results in a
slower response. When R becomes very large, the eigenvalue of the closed-loop plant aligns with the
open-loop eigenvalue because both gains tend to zero. This means the controller gain is effectively zero,
thus minimizing energy expenditure. On the other hand, decreasing R permits larger control signals,
leading to a faster response but higher energy consumption. For an open-loop stable plant, both the gain
and the magnitude of the eigenvalues are smaller, which is expected since the system is already stable
and requires less control effort.

Unlike the stable plant, which maintains stability regardless of the horizon length (H), the unstable
plant faces instability with combinations of high R values and small horizons, as previously discussed.
Therefore when comparing these results with the outcomes observed for the unstable first-order plant, it
is evident that opting for larger horizons is more advantageous for stabilizing the unstable plant.

Page 7



Model Predictive Control ECPD

4 - (P3) Model identification

4.1 First experiment:

The intent of the first experiment, in this section of the Lab, was to modify the MATLAB® script
TCLab_openloop.m to use a sampling time of 5 seconds for both the discrete-time model identification
and the MPC. The input profile for the first heater was adjusted as follows:

e Initial input set to achieve a steady-state temperature between 40 and 50 degrees Celsius, and hold
this input until equilibrium is reached.

e Subsequently, incrementally raise and lower the input by 5-10%, allowing the temperature to sta-
bilize before each change.

e Perform approximately five such input changes, with each transient period lasting around 1000
seconds.

The goal was to reach equilibrium for a given input, then apply several step inputs around that
equilibrium to observe the output response and estimate the matrices for the linear incremental dynamics
that best fit the experimental data.

Considering these, the first experiment was conducted and the results show as it follows:

+ Temperature 1
45 +  Temperature 2

25['

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [s]

Temperature [°C]
&

w
S

Heater 1
Heater 2

80
60

40

1000 2000 3000 4000 5000 6000 7000 8000
Time [s]

Heater [%]

o

Figure 8: First experiment results

4.2 Second experiment:

For the second experiment, the duration was intentionally kept under 1000 seconds to excite the
system more significantly. Higher amplitude input changes were applied without waiting for the system
to reach equilibrium, while keeping the temperature within the 40-50 degrees Celsius range. The goal
was to perform approximately 10 input changes. The purpose of this experiment was to validate the
identified model using this new data, which was not used for the initial model identification.

For this experiment, the following results were obtained:

Page 8



Model Predictive Control ECPD

a
S

IS
o

+ Temperature 1
*  Temperature 2 T

IS
3
T

Temperature [°C]
@ w
8 &
T T

200 300 400 500 600 700 800 900 1000
Time [s]

Heater 1
Heater 2

80

60 —

Heater [%]

40

0 100 200 300 400 500 600 700 800 900 1000
Time [s]

Figure 9: Second experiment results

4.3 Third experiment:

In the final experiment, the script T'CLab_identification.m was run to perform model identification
using the plant data.

First, the results from the initial experiment were loaded to estimate the equilibrium output for the
initial input. Adjustments to k_ss_begin and k_ss_end were made to capture the correct samples for
equilibrium. The incremental outputs and inputs were then computed and the matrices that best fit the
observations were determined for n = 1.

For the first requested plot, with the state dimension n = 1 , the initial state was estimated using the
findstates function. This state was then propagated with the model. The resulting plot is presented in
Figure 10.

For the second plot, shown in Figure 11, the data from the second experiment was loaded. The
incremental variables were computed, and the initial state was estimated and propagated using the
model.

Model performance (n=1) on identification dataset

5 r‘ 10 Model performance (n=1) on validation dataset
’ []
e ] o 0
< >
. Experimental data al X <110 4-”
-5 Model " ¥ . Experimental data
L L : Model
2000 3000 4000 5000 6000 7000 -20 L L .
Time [s] 0 200 400 ] 600 800
Time [s]
10
2 T —

5t - [ a\
—= @] / \ |\
& | | = OR /\ \ [ ANy /
> 0 _ 2 Pl B \ L /

\ -

. | 52 Y J |

5t > \f h |

A4 ‘ |/
-10 : : - - . L L A
2000 3000 4000 5000 6000 7000 0 200 200 600 800
Time [s] Time [s]

Figure 11: Validation, n=1
Figure 10: Identification, n=1

This process was repeated for several state dimension values n, calculating the mean squared error
(MSE) between the two data records to determine the best fit for the experiment. The MSE results
are displayed below:

Page 9



Model Predictive Control ECPD

n MSE n MSE

1 3.3958 6 2.0434
2 2.0257 7 1.9001
3 1.9148 8 1.7027
4 2.0455 9 0.0749
5 1.7905 10 1.5530

Figure 12: MSFE results for several n values

The selection of the optimal order is based on the M SFE error values. If two different state dimensions
result in very similar M SE errors, the lower-order model should be preferred. In this case, the lowest
MSE value corresponds to n = 9 which is a high-order model and thus consumes more energy, which is
not ideal. If lower-order models had M SE errors close to this value (0.0749), the balance between cost
and efficiency would favor the smaller n value. However, since all other MSFE values are significantly
higher, n = 9 is the best choice to ensure a high-quality model with sufficient efficiency.

Therefore, n = 9 was chosen as the state dimension for the generated model and will be used through-
out the remaining parts of this report.

The new plots for the chosen state dimension are shown in Figures 13 and 14:

Model performance (n=9) on identification dataset
] Model performance (n=9) on validation dataset

] 10
{ p P
J \ ? . . ) ’\\._/h\}." \
i = A :
Experimental dala - ra .
P . Experimental data
20 . . ; r
2000 3000 4000 5000 6000 7000 0 200 400 600 800
Time [s] Time [s]
107
0.5 ’ h |~ ‘l ‘
5 o . A \
9 = 0 I“ |‘ |H‘ |I ‘v”“n\‘ | l‘\ 1 r-‘l
K — AR (YD T
= \ .. M ot
5t 4 |
-10 -1 ' ' ' '
2000 3000 4000 5000 6000 7000 0 200 400 600 800
Time [s] Time [s]
Figure 13: Identification, n=9 Figure 14: Validation, n=9

Page 10



Model Predictive Control ECPD

5 - (P4) MPC and Kalman filter design

This section of the report focuses on the design of a model predictive controller and a Kalman filter,
supported by a simulation environment. This is the final step before applying the system to the real-world
application discussed in Section 6.

5.1 mpc_solve function

The first task is to develop the mpe_solve function in MATLAB®, which aims to solve the uncon-
strained MPC regulator for a given initial condition.

This function calculates the optimal control needed to achieve a desired reference temperature. It
utilizes the system derived in Section 4 and parameters such as the horizon size H, the initial state of
the system xg, and the R matrix, which weights the control input in the cost function. These are the
initial inputs for the function. Additional inputs will be required later to add constraints to the control,
among other factors.

To ensure rapid computation of the control, the dense formulation was employed. The process of
minimization will involve the use of quadratic programming. In MATLAB® this function is called
quadprog. The minimization process is described below:

mzin %ZTFZ + 1Tz
subject to  Aineq® < bineg (5.1)
Acgz = beq
h<z<u
In these expressions, z is the optimization variable, F is a positive semidefinite matrix, f is a vector,

matrix Ajpeq and vector bin., define the inequality constraints, matrix A., and vector B., define the
equality constraints and [, and wu define lower and upper-bounds on z.

Similar to Section 3 (P2) and also assuming a time at & = 0, the following cost function was considered:

-1
J=Y 27 +1)Qz(i + 1) + Ra*(i)
0

7=

Subject to the dynamics Z(i + 1) = AZ(i) + Bu(i) and considering the initial state x(0) and output
equation §(i) = CZ(7), the minimization yields the control profile, from which only the first control action
is applied:

u(0) = @(0)

It’s essential to note that the ’'hat’ notation in these variables signifies that they are virtual vari-
ables, indicating predictions made within the MPC framework, thereby distinguishing them from the real
variables. This process is repeated in the next sampling interval.

Defining z as the concatenation of all the control variables:

a(0)

a(H —1)

This yields the following cost terms, where x(0) is the initial state:
F=2M, f=2z70)II"W

Finally, the quadratic programming may be applied without any constraints modelled. Utilizing
the data from Section 3, identical results were achieved for the gains, thus confirming the successful
development of the mpc_solve function.

Page 11



Model Predictive Control ECPD

5.2 Closed-loop unconstrained model:

Selecting The Right Horizon Value

Subsequently, a closed-loop unconstrained model predictive controller was implemented using the
mpc_solve function to regulate Ay to zero. This is expected to result in the output and input values
converging to their steady-state values.

The next step in this report involved assessing the influence of the horizon and control weight values
to determine a suitable H value for future use. The results for various horizon values, with a fixed control
weight R, are presented below:

Absolute output

Absolute input

100 45
e H = 10
H=20
80 L H=50| | AOF T __“__. mel _:.:___ i nmmmmng
E——— I
ol | a5 | .::.' .-.u
> - .
40t 1 sof
.
———————————————————————————————————— ::" . H=10
20 1 25 1 <« H=20|1
u!
- H =50
H=70
0 . : ! : 20 I I I |
0 100 200 300 400 500 0 100 200 300 400 500
Time [s] Time [s]
Figure 15: Input effects for different H values. Figure 16: Output effects for different H values.

From these figures, it can be concluded that a higher horizon value results in a faster response and
more complex computations. However, changes in response timing are only significant for horizon values
up to approximately H = 20; beyond this point, the differences become minimal. This is evident as the
results for H = 70 closely match those for H = 50, overwriting them and thus confirming this observation.
Additionally, a relatively high horizon is preferable to better approximate the controller gain to that of
an infinite horizon controller.

Considering these factors, H = 50 was chosen as it strikes a good balance between runtime and
response speed, while also ensuring a good approximation to the infinite horizon control gains.

Selecting The Right Weight Control Value

Additionally, more plots were created to study the effect of the control weight for a fixed horizon
value:

Absolute input Absolute output

45
R=0.02
R =005
************************ R=0.1 |
R=05
R=1
351
%)
e
>
L . R=0.02
e e —— R=0.05
a0l R=0.1
R=05
R=1
0 : : : t 20 . . L .
0 100 200 300 400 500 0 100 200 300 400 500
Time [s] Time [s]
Figure 17: Input effects for different R values. Figure 18: Output effects for different R values.

Page 12



Model Predictive Control ECPD

The impact of varying the control weight R is shown in Figures 17 and 18. Higher R values result in
longer convergence times to reach the desired temperature. Conversely, lower R values reduce the penalty
on the energy expended by the controller, leading to higher control signals that can even exceed 100%,
which is feasible here since no constraints have been applied yet.

Therefore, to achieve a resulting control u that does not exceed the interval [0, 100]%, an appropriate
control weight value would be R = 0.02.

5.3 Implementation of Constraints

Given that for certain control weight values the controller exceeds the plant’s maximum allowed
control signal, as observed in Figure 17, it is essential to implement constraints in the MPC controller.
With the desired interval for the control being [0, 100]%, the constraint can be described as follows:

0 < u(k) <100 (%), V& (5.2)

The goal is to drive the incremental output Ay to zero, ensuring the absolute output y reaches the
equilibrium 7.

It is important to account for the steady-state control value, u,, = 25%. Consequently, a change of
variables must be applied to maintain coherence, resulting in the permissible control range of [—25%, 75%).
This can be accomplished using the expression Au(k) = u(k) — @, which, when related to equation (5.1),
yields the following parameters:

A4(0) —a 100 — @
z=U-= ) Lb=1:1], up = (5.3)
Au(H —1) -1 100 — w
With these modifications, the following figures display the results for H = 50 and R = 0.02 with the
constraints applied:

Absolute input Absolute output

45

120
ooy | aF T ot
..II.
80 f e
35} ’
— — S
£ 6ol 2. ¢
=] > t
301 )
40 - K
]
20 j ___________________________________ 4 25 7l o
== \\ithout control limits “ = Without control limits
With control limits = With control limits
0 ! ! L L 20 | | | |
0 100 200 300 400 500 0 100 200 300 400 500
Time [s] Time [s]

Figure 19: Results for MPC control using constraints Figure 20: Results for temperature using constraints

It can be seen that the actuation is now limited at 100%. If the constraints were not implemented,
than the controller would have tried to apply an unrealistic actuation.

5.4 Tracking With Feed-Forward

The main objective of this model predictive controller is to give a reference for temperature which may
be followed. Assuming a reference r = § + Ar, the controller can be designed to track the incremental
reference Ar, rather than regulating Ay to the origin.

One possibility to achieve this is by penalizing the reference tracking error in the cost function, where
the control Au can be determined by solving the steady-state equations for AZ and Au:

Page 13



Model Predictive Control ECPD

AZ = AAZ + BAu — Au=[C(I — A)~'B] 'Ar
Ar = CAz

from which, for a given reference, AZ and Au can be obtained.

Hence, an additional change of variables needs to be implemented, as follows:

i = Ai — Az
5 = Aj — Ar (5.4)
§i = Ad — A

Similarly to equation (5.3), the parameters are redefined with the additional modifications:

5i(0) —u— Au 100 — @ — A
z=U= ) I, = ) up = (5.5)
Su(H —1) —i—Au 100 — @ — A

With this, reference tracking is now possible.

In this section, the aim is to track a reference of Ar = 5°C' using the feed-forward tracking scheme.
These outcomes are depicted in figure 21, along with the results of an introduced disturbance in the
ambient temperature through the use of ¢l with a 10% increase. It is noticeable that these were obtained
using the horizon and weight values H = 50 and R = 0.02:

Incremental input Incremental output

80 10
60 577777777777;}.? *
s'lll
40 0r ."I
— — ]
= o '
— — L]
5 207 - f
4 3 '
3
0 -10 .
'
.
20 1 1518 °
,,,,,,,,,,,,,,,,,,,,, Normal ¢1 - '..‘ 3 Normal ¢1
10% increase c1 » 10% increase c1
-40 - - - : - - - -20 3 - - - - : -
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time [s] Time [s]

Figure 21: mpc_solve results for original c1 and 10% increase.

The figure displaying the control results shows that the constraints were successfully implemented,
as it does not rise above the desired limit of the interval (75%). Additionally, the images demonstrate
successful tracking of the reference, as observed on the right where the variation of the output converges
to Ay = 5°C.

However, regarding the disturbance using the constant ¢l with a 10% increase to simulate a change
in the ambient temperature, represented by the orange lines and dots, it can be observed that there is
an offset in the temperature of the heater. This means that the increase in the disturbance c1 negatively
effects the feed-forwarding of the system.

5.5 Safety constraint

In this section it was requested the addition of a safety constraint that will be applied through the
terms Ajpeq and bineq present in equation 5.1.

Firstly, the constraint can be defined as Gg(i) < g, ¢ =1,..., H, which can be expressed in matrix
form:

Page 14



Model Predictive Control ECPD

G ... 0| [9(1) g

D oS (5.6)
0o ... G| |g(H) g

where the first matrix can be referred to as G and the last vector as §.

Hard constraint:

In the context of the dense formulation, the output vector is defined as Y = WU + I1z(0). Conse-
quently, the constraint parameters for the quadprog function are as follows:

Aineq = GW, bineq = § — GIIz(0) (5.7)

where the constraint, known as the hard constraint, is defined by:
Gy(i)<g,i=1,....H (5.8)

By limiting the temperature to 55°C' and setting a reference value above this temperature, we conclude
that G can be substituted by the identity matrix and g by a column vector with H elements where each
line contains the maximum temperature value, i.e ¢ = [Ymaz -+ Ymaz]

The following figure displays the plots for a given reference above the maximum temperature limit
(Ymaz = 55°C), specifically for a reference of Ar = 25°C, with H = 50 and R = 0.02, incorporating the
hard constraint:

Absolute input/output

60

50
%)
M- === — == = — = — — = — — -
-

30

— — 3
20 ] ] | | | | ]
0 50 100 150 200 250 300 350 400

U [%]

0 50 100 150 200 250 300 350 400
Time [s]

Figure 22: Results using hard constraint

This figure demonstrates that with the implementation of hard constraints, the temperature respects
the imposed limit (55°C'). However, there are significant oscillations in the control signal, specially when
the it initially approaches the reference temperature, which is not desirable.

It is important to note that while this process works for the given reference, it cannot be generalized
to work for every case. Nevertheless, a soft constraint may be used to reduce these control oscillations
and guarantee that the controller does not reach an unfeasible state.

Soft constraint:

To address the issues presented before, the existing hard constraints can be replaced with a soft
constraint, where the constraint is now expressed as:

Gili) < i=1,... H
{ y(i) < g+mni, i (5.9)

m >0, i=1,... H

Page 15



Model Predictive Control ECPD

This yields the constraint GY < § + n, which leads to the updated cost function:

H—-1
J = (i +1)+Ri*(i) + an’(i + 1) =YY + RUTU + an™y (5.10)
1=0

-

Below is the appropriate manipulation to guarantee consistency with equation 5.1:

The optimization variable now becomes:

U
Y = W ITo(0) = [W O || + [(0) = Wz + ITa(0)
—_—

Ws
Rlg  Opxn

Opxua ol

U

J=YTY 4+ [UT 7] ;

=YTY + 2TRgz

GWU —n < g— GIz(0)

J = (Wsz + Hz(0))T (Wsz + Hz(0)) + 2T Rs2
U
n

= {GW —IH] < §— Gz (0)
)

Gs

J=3T2WEWs + Rs) 2 + 22(0) " II" W z + (ITz(0))T ITz(0)

- o Ms=F 1 (5.11)
Gs z < g— GIz(0)
~~ —
Aineq 9s=bineq
With the inclusion of these optimization variables, the control constraint variables become:
I = [OUIXU] . up = FOO(PM)] (5.12)
Omx1) OO(H x1)

This way, we obtain the new variable constraints to be used in the mpc_solve.
The following images display the results of incorporating the soft constraint modifications for a max-
imum temperature y of 55°C, a reference above this value Ar = 25°C' and with H = 50 and R = 0.02:

Absolute input/output

60 04
S0y 035}
CafF-——-—-= R e S e :
= 03}
a0l
0 | | | | | L ===, 0.25f . T
0 50 100 150 200 250 300 350 400 T e tirebeesesenstans
Time [s] = 02 - ot ! . E
0.15 .
0.1 !
005+ s = nfore=0
' nfore=e_,
0 : : : : - : : | 0 ‘ ‘ ‘ ‘ ‘
o 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Time [s] Time [s]

Figure 23: Results using soft constraint

Compared with figure 22, it is evident that the oscillations have significantly decreased.

Page 16



Model Predictive Control ECPD

Regarding the optimization variable 7, it is important to note that e represents the error. Here, the
presence of disturbances is indicated by e = egq, which represents the noise in the system derived from
the identification model presented in section 4, whereas e = 0 indicates their absence.

Initially, the given reference causes the temperature to rapidly increase above its maximum allowed
limit, activating the safety constraints. As time progresses, n stabilizes to maintain the temperature at
y = 55°C.

Analyzing figure 23, it can be concluded that 7 is zero only before the temperature reaches the 55°C
temperature limit. Afterwards, it takes on nonzero values and converges over time. If the reference were
to be halted, it is expected that 1 would return to zero. Additionally, it can be seen that the presence of
noise in the system results in oscillations of 1 around the convergence value for no noise.

5.6 Kalman Filter

As stated in the laboratory guide [1], the MPC requires an initial condition on the state Az and
disturbances in order to predict the next states. To solve this issue a state observer may be implemented
and a Kalman filter is the approach that will be used.

For this, we begin by assuming the following model:

Azx(k +1) = AAz(k) + BAu(k) + Bd(k) + K.Ae(k) (5.13)

Ay(k) = CAx(k) + e(k) (5.14)

To estimate the disturbances with the state we need to augment the state with the disturbance. This
will also give us an updated output equation.

[A@"(lﬁ-l)} _ [A B} [Ax(k?)] n [B] Au(k) (5.15)

d(k + 1) 0 1] dk) 0
y(k) =[C 0] [A;g,if;’] (5.16)

With the augmented state z4 we can write the model above as:

g = {Aﬂ valk+ 1) = Agza(k) + BaAu(k) y(k) = Caza(k) (5.17)
Where:
Qr, = [%E 5OE] Ag = [61 ]13] By = ﬁﬂ Ca=1[C 0] (5.18)

in which g is a parameter that needs be tuned.
The estimation itself is comprised of 2 steps, perdition and correction. The prediction is made by
following this:
2, (k) = Agzqa(k — 1) + Byu(k — 1)

Then we can correct this initial estimation once we have the latest measurement y(k).

Ta(k) = 24 (k) + L(y(k) — Caty (K))

The Kalman filter goal is to try and minimize the variance of the estimation error.

Jg = E[)_ |za(k) - za(k)|)*)
k=0

We start by using the estimate of e, from experimental data. This allows us to get an initial estimate
of Qg and Rg, which we can then refine.

E((Kee(k)) (Kee (k)] = Qp Ele(k)"e(k)] = Ri

Page 17



Model Predictive Control ECPD

We then augment (g to get the state covariance matrix g, as well as the remaining required matrices
Ad, Bd and Cd.

Once we had calculated all of these, we could then proceed to the state estimation, which gave us the
results in figure 24 and 25.

Absolute input/output

Time [s]

Figure 24: State estimation using Kalman filter with 0y = 2 X €44

o 500 1000 1500 2000 2500 3000 3500 4000
Time [s]

Figure 25: Disturbance in respect to time

The disturbances tend to an expected value represented by the horizontal traced line with E[d] = 3.8%.
This value is explained further in the page.

In order to find a theoretical disturbance we can start by looking at the model but this time without
the noise.

Ax(k +1) = AAz(k) + BAu(k) + Bd. (5.19)
We are simulating that disturbance by changing 3:

x(k+1) = Az(k) + Bu(k) + (1 + 8)c1,  where ¢ = (I, — A)T — Ba. (5.20)

Resolving the equation we get

x(k+1) = Az(k) + Bu(k) + (I, — A)T — Bu+ fBc; < x(k+1) — 7 = A[z(k) — Z] +B [u(k) — 4] +8c;
N————— N—— N——
Ax(k+1) Az (k) Au(k)

<  Ax(k+1) = AAx(k) + BAu(k) + Bey. (5.21)

We can conclude that Bd = f¢;, where 5 = 0.1. From here the expected value E[d] = 3.8% can be
extracted performing [(8 x c1)|B] ™!, which is a linear system to be solved.

Since the vectors B and c¢; are not linearly dependent, there is no solution to this equation. The
disturbance estimated by the Kalman Filter will be the one that best approximates the simulated system,
or in other words, the one that minimizes the error |Bd — Scl|.

Furthermore, the §g parameter was tuned to be 2 X es;q as a compromise between convergence speed
and minimizing overshoot and oscillations. Increasing dg decreases the convergence time of the estimation

Page 18



Model Predictive Control ECPD

Absolute input/output

L T T LN LS CL A
......
.......

o0 I ATTY T L Lia

20 7+

50 100 150 200 250 300 350 400 450 500
Time [s]

0 1 Il 1 1 1 1 Il 1 1 1
50 100 150 200 250 300 350 400 450 500
Time [s]

Figure 26: State estimation using Kalman filter with different Jg

30 o de=00s R,
. < B =2e e

251 By =100 e,
— — —Bd=01sg

o 3 -

. . .
0 500 1000 1500
Time [s]

Figure 27: Disturbance with different §g

but introduces overshoot and potential oscillations in the disturbance estimation. Conversely, a value
that is too low results in a longer time to converge to the simulated state.

Alterations to the variable dg, which represents the variance of the disturbance d, influence the
convergence speed and the speed of the oscillations. Figure 26 and 27 illustrates the impact of both
increasing and decreasing the value of §p when a big initial error is considered. A low value of g results
in a longer transient time, but a more stable result. Upon increasing the value, the transient time is
reduced, yet an initial overshoot is also observed. For a compromise between the both, a 6g of 2 x /e,
was considered as it gives us a small overshoot but also a good convergence.

Another observation to be made is about the error in the initial state estimation. The Kalman filter
was brute forced to have this error considerably high and it can be seen in the very first moments of
the simulation that the filter slowly converges to the real values of temperature. Another consequence
of this error can be spotted in the disturbances. Because the error is random but of similiar magnitude,
the initial guess of the filter may be below or above the real value. Nevertheless, for the three cases, the
disturbances converge to the expected value mentioned before: E[d] = 3.8%.

5.7 MPC Implementation

The MPC controller without the Kalman filter cannot achieve zero error during steady-state because
it does not account for the disturbance. However, the Kalman filter can estimate the disturbance by
calculating |y — g|. With this estimation, we can feed the disturbance into the MPC, allowing it to
correct based on this value and better predict the simulated system.

This approach is somewhat analogous to the integral term in a PI controller, which corrects steady-
state errors over time by integrating the error and generating an output that is fed back into the system.

Page 19



Model Predictive Control ECPD

This ensures the controller can adjust for small discrepancies between the reference and the system
response.

Absolute inputioutput

; — — —Ymar
20 | I | I I | I Ymaz

0 200 400 600 800 1000 1200 1400 1600
Time [s]

U [%]

600 800 1000 1200 1400 1600
Time [s]

Figure 28: System output and reference for complete model

In figure 28, we can see that the system is able to closely follow the reference and maintain a stable
temperature. Additionally, the effect of the safety constraint is evident, as it prevents the temperature
from exceeding 55°C, even when a higher reference value is used. This effect is shown in Figure 29, where
the constraint is only relaxed when the reference surpasses our temperature limit.

03 T T

02

L L | . I . L .
o
0 200 400 600 800 1000 1200 1400 1600
Time [s]

Figure 29: Constraint relaxation term

In figure 30, it is clear that the disturbance estimation converges over time as the Kalman filter
continuously refines this value. The initial values are considerable high in absolute value and, once again,
the expected value E[d] = 3.8% is reached after some time.

50 T T T T
———Bd=01=%¢
40 >
oy w
@ 30 .l
2]
c
] =
£
500 4
g2 .
[=]
10 |- i g 9
N e '-V‘_.’__’_\.-A e ‘
RS0 OO SO U DUDRS U SO o ... o 3. v Jﬁ"ﬂi"gwﬁygfa-‘_‘;‘,’iﬁ‘x‘mfﬁﬁmﬁ
L I I I I I I
0
o 200 400 600 800 1000 1200 1400 1600

Time [s]

Figure 30: Disturbance estimation

Furthermore, in figure 31, the error also converges to zero, demonstrating an accurate estimation of

the system response. Besides the initial error, the state estimation stays reliable under 1% of error during
the entire simulation.

Page 20



Model Predictive Control ECPD

R AT N P s s e el . I e et
0 200 400 800 800 1000 1200 1400 1600
Time [s]

Figure 31: Output error

6 - (P5) Application to the real system
For the real-time application of the MPC, a horizon size of 50 and R = 0.02 were chosen according

to the previous sections.
Below are the results for the same conditions presented in the earlier section of the simulations:

Absolute input/output

_____________________________ e S
50 & —
- L u
o -~ - —
T e e T e
= i
20 = = = Ymas

o 200 400 600 800 1000 1200 1400 1600
Time [s]

Figure 32: Real-time results for the MPC

8f- - = 3.

Disturbance [%]

0 200 400 600 800 1000 1200 1400 1600 0 200 400 800 1
Time [s] Time [s]

1600

Figure 33: Disturbance and error in real-time application

Figure 32 demonstrates that the constraints were successfully implemented, as the maximum temper-
ature of 55°C' was not exceeded. This validates the effectiveness of the constraint variables in readjusting
the control input to maintain the temperature within the desired range. Additionally, some oscillations
are present when the system reaches the maximum temperature, which was expected.

By comparing these results with the ones obtained in figure 28 it is observed that they are very similar.
The main differences between these results were anticipated, as the simulation allows for controlled or

Page 21



Model Predictive Control ECPD

constant disturbances, unlike real life where disturbances are unpredictable.

The most significant differences are the smaller estimation error of the Kalman Filter in the real
system and the behavior of the estimated disturbance. In the simulation, the disturbance primarily os-
cillates around the expected value, whereas in the real system, the oscillations are more variable due to
uncontrollable factors.

In conclusion, the successful outcomes from the real plant experiments confirm the validity of the
simulation-based design.

Page 22



Model Predictive Control ECPD

References
[1] Jodao Manuel Lage de Miranda Lemos; Alberto Vale. “Predictive Control of a Thermal Plant”.

In: https: // feniz. tecnico. ulisboa. pt/ downloadFile/ 563568428880817/ ECPD - 2023 -
2024_Lab_ guide. pdf ([Acessed 10/06/2024] (2023/2024)).

Page 23


https://fenix.tecnico.ulisboa.pt/downloadFile/563568428880817/ECPD-2023-2024_Lab_guide.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/563568428880817/ECPD-2023-2024_Lab_guide.pdf

	Introduction
	(P1) Basics on constrained optimization
	Unconstrained minimization for Rosenbrock function
	Constrained minimization for Rosenbrock function
	Plots

	(P2) Basics on receding horizon control
	Optimal LQ gain
	Optimal RH gain
	Open-loop 1st order plant

	(P3) Model identification
	First experiment:
	Second experiment:
	Third experiment:

	(P4) MPC and Kalman filter design
	mpc_solve function
	Closed-loop unconstrained model: 
	Implementation of Constraints
	Tracking With Feed-Forward
	Safety constraint
	Kalman Filter
	MPC Implementation

	(P5) Application to the real system

