TECNICO
LISBOA

Acrobat: A Free-flyer for In-Orbit Additive Manufacturing

Group Number

Alexandre Luis Rocha - 95767
Lucas Goncalves - 99519
David Valente - 103212
Lourenco Gouveia Faria - 103354
Inés Lobato Mesquita - 103645
Afonso Lanca - 103838

Report elaborated for the Curricular Unit

Project in Aerospace/Eletrotechnical Engineering

Supervisors: Prof. Rodrigo Ventura
Prof. Luis Caldas de Oliveira

Rafael Cordeiro

June 2024

Executive Summary

Acrobat is a proof of concept designed to assess the viability of in-orbit additive manufacturing. In its zero
gravity configuration designed for operation in aeriform environments, the robot has six propellers oriented at
the vertices of an octahedron giving it six Degrees of Movement (DoM). We used a Stewart Platform with six
Degrees of Freedom (DoF) mounted on the robot with a filament extruder attached as an end effector for
3D printing. On Earth, we tested the robot on an air-bearing base which allowed the robot to move over the
test table with virtually no friction. It used only the three propellers whose axes lie parallel with the table top.
Our intention was to use the robot’s depth camera and externally mounted camera with accelerometer data
in a Model Predictive Control (MPC) approach to control the robot’s movement over the table and achieve
position stabilization. However, after many setbacks we managed limited testing of the control system in an
open loop configuration. From the data generated, we provide an analysis of the open loop’s performance for
different movement types and directions. We also implemented inverse kinematics and developed movement
methodology for the parallel manipulator originally intended to demonstrate FDM 3D printing. Despite not
meeting this final, ambitious goal, we still managed to make calibration algorithms, an adapted printing system,

and a methodology for how the two systems would function together.

Contents

Executive Summary
List of Tables e
List of Figures e
Abbreviations L

Nomenclature e e e e e e e e

Introduction

0.1 Motivation L

0.2 Objectives e

0.3 Document Outline
| Free-Flyer

1 Background

2 Methodology

2.1 Mechanics and Dynamics
2.1.1 Space Configuration
2.1.2 Ground Testing Configuration
2.1.3 System Dynamics
2.1.4 Propeller Dynamics

2.2 Control and Navigation
2.2.1 Navigation e
222 Vision ...
223 Open-loop test
2.2.4 Model predictive controller

2.3 Programming and Architecture
2.3.1 Electronics
2.3.2 ROS2 Architecture

3 Results
3.1 Openlooptesting e

© o ~N o o

11
14
14
14
14
14
21
21
22

28

Il Parallel Manipulator

4 Background

5 Methodology

5.1 Mechanics e
5.2 Design Parameters
5.3 Inverse Kinematics e
5.4 Workspace
5.5 Electronics

5.5.1 Extruder Electronics
5.6 Vision and Calibration

5.6.1 Camera Calibration

5.6.2 Manipulator Calibration

6 Results

6.1 Translations Test L
6.2 Position Error Evaluation After Manual Calibration

Il Free-Flyer with Manipulator

7 Methodology

7.1 Control . . .
Conclusions . . .
7.2 Obstacles .

7.3 Future Work

Bibliography

Vi

30

31

33
33
35
37
37
39
40
42
43
43

45
45
46

47

48
48
49
50
51

53

List of Tables

2.1
2.2
2.3

2.4
25
2.6

51

Coefficients of thrust for clockwise and anti-clockwise rotations 12
K for clockwise and anti-clockwise rotations 13

Mean squared error of the fitting polynomials up order 4 of PWM signals as a function of thrust

provided by each propeller 13
Robot and environment parameters for simulation oL 15
Horizon parameters and respective sizes 16
Cost function parameters for simulation 18
Design parameters of ACROBAT's current manipulator 36

vii

viii

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
23
2.4
25
2.6
2.7
2.8
2.9
2.10
211
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

3.1

4.1

Astrobee next to astronaut Anne McClaino 4
Rendering of Space Cobot 5
First version L e 5
Second version made with Jodo Vale 5
Third version for LEAer/LEEC capstone project 5
[llustration of a threaded heat set insert being used withabolt 7
Rendering of Acrobat’s free-flyer body oL 7
Octahedron with bi-directional thrust axes at vertices 8
Space configuration of Acrobat 8
[llustration of air bearing in operation[6] 8
Acrobat on air bearing base L 8
Top view of highlighted axes with base geometry aligned with the movement plane 9
Aligned axes and table plane shown in modeled testing configuration 9
Thrust as a function of of rotating speed squared, obtained in MATLAB® 12
Power in function of square of rotating speed, obtained in MATLAB® 12
PWM signal as a function of thrust, obtained in MATLAB® 13
Simulation of robot's trajectory 18
Simulation of PWM signals 19
Obstacle avoidance trajectory simulation 20
Actuation of the propellers in obstacle avoidance simulation 20
Free-flyer onboard electronics 21
Eletrical connections L 22
ROS2 architecture flow diagram 22
Communication between nodes generated by ROS2 command 23
Ceiling camera perspective and the published data 24
Schematic of the control unit in ROS2 25
Interface Node Communication in ROS2 26
Interface for open loop L L 26
Open Loop Test o e 29
Example of a Delta Platform being used on a 3D printer[9] 31

4.2
4.3
4.4
4.5

51
5.2

53
54
55
5.6
57
5.8
5.9
5.10
5.11
5.12
5.13
5.14

7.1

lllustration of a Stewart-Gouge platform[10] 31

Schematic of a rotary Stewart platform[11]. 31
Previous Acrobat version rotary Stewart platform 32
Old version manipulator being calibrated and tested 32
Latest rotary Stewart platform design 33

Thermal simulation results depicting heat break between the hotend and heatsink with fan

turned of f[12] L 34
Design parameters of Stewart’s base platform L. 35
Design parameters of Stewart’s mobile platformo 35
MATLAB 3D plot representing the manipulator used for inverse kinematics 36
Rejection zones for the manipulator'slegs 38
Manipulator electronics schematic 39
Prototype circuit for controlling the extruder oL 40
Smart Orbiter V3 extruding plastic from a 1.8 mm nozzle 40
Two coil stepper motor diagram 41
MOSFET use case example 41
Standard ArUco Marker 42
Proposed alternative of the ArUco marker 42
Detection of both Aruco Markers by the external camera 43
Printing System Schematic 49

Abbreviations

3D

CAD

DoF

DoM

ESA

ESC

FCU

FDM

FOV

GPIO

HAT

IMU

ISR

ISS

MIMO

MIT

MOSFET

MPC

NASA

PID

PLA

PM

PWM

ROS

RPS

SO3

SSH

3 Dimensional

Computer Aided Design

Degrees of Freedom

Degrees of Movement

European Space Agency

Electronic Speed Controller

Flight Controller Unit

Fused Deposition Modeling

Field of View

General Purpose Input/Output
Hardware Attached on Top

Inertial Measurement Unit

Institute for Systems and Robotics
International Space Station

Multiple Input Multiple Output
Massachussetts Institute of Technology
Metal-Oxide-Semiconductor Field-Effect Transistor
Model Predictive Controller

National Aeronautics and Space Administration
Proportional Integral Derivative
Polylactic Acid

Parallel Manipulator

Pulse-Width Modulation

Robot Operating System

Rotations per second

Smart Orbiter V3

Secure Shell

Xi

Xii

Nomenclature

Cp

Cr

Actuation matrix

Coefficient of power

Coefficient of thrust

Propeller diameter

Force

Inertial momentum

Constant for RPS-to-thrust conversion
Momentum

Controller horizon size

Rotation matrix

Torque

Time interval

Angular velocity

Angular velocity

Air density

Orientation

acceleration

Distance between geometric center and propellers
Kilograms

Mass

Meters

xiii

Position
Seconds
Input vector

Velocity

Xiv

Introduction

Free-flyers are autonomous robotic systems designed to operate and navigate independently in microgravity
environments such as the International Space Station (ISS) or in orbit. They are untethered and do not rely
on external rails or supports for movement. This intrinsic flexibility and autonomy makes them appealing for
complex tasks, like assisting astronauts and manipulating objects, or high-risk tasks, like maintenance and

object deflection.

The aim of this project is to answer the question: Can we build in space? In-space construction has
innumerous benefits and implications for both the space industry and industries on Earth. By providing a proof
of concept of a free-flyer adapted to testing on Earth and performing additive manufacturing, we hope to

demonstrate that this powerful prospect has real merit.

0.1 Motivation

Current space systems and infrastructure have to undergo the rocket launch environment which imposes
mass, volume, and robustness stipulations. Even with the increasingly reduced cost of sending material into
space, parts made to withstand launch forces will be significantly heavier than those made only to resist small
in-orbit operational forces. Moreover, in space parts are no longer constrained by the launch bay. The ability to
manufacture and assemble structures in orbit provides more efficient resource allocation and enables larger,

theoretically infinite, structures to be built.

The implications are obvious for the space industry, but far more extensive for Earth. Enabling larger,
better successors to instruments like the James-Webb Telescope, building larger space stations for research,
or establishing refuelable supply depots in orbit could be revolutionary for the space industry, though not
directly tangible on Earth. Emerging areas like tissue engineering benefit immensely from access to zero gravity
environments. Assuming this area continues to advance, the ability to construct manufacturing facilities in
space could alleviate organ supply issues. Space construction also helps other industries like semiconductors,
pharmaceuticals, and materials, among others, essentially allowing manufacturers to maximize or minimize
parameters where they cannot within Earth's gravity. Whether it be purity, strength, thinness, or weight, the
potential effects for a wide variety of industries could have a larger impact for the world than the advent of

reusable rockets brought on by SpaceX.

0.2 Objectives

Acrobat has two distinct parts for broad-limitless and fine-limited movements: the free-flyer and the
manipulator, respectively. As such, our objectives are divided between the two parts as well as where they

overlap.

Free-flyer

= Move to a predetermined location with centimetric precision
= Avoid obstacles when navigating

= Anchor at a predetermined location

Manipulator
= Calibrate using external and onboard information
= Move with sub-millimetric precision

= Track markers using an onboard camera

Full System
= Reject perturbations caused by movement of the manipulator
= Print simple geometry such as a line or circle

= Follow and align towards a marker

0.3 Document Outline

Much like the objectives, the document is divided into three distinct parts covering the background,
methodology, and results of the free-flyer and manipulator systems in parts one and two respectively. In part

three, two sections cover methodology and results for the full robot.

Part |

Free-Flyer

Chapter 1

Background

Free-flyers have been theorized since the 1960s by visionaries such as Krafft Ehricke for tasks like maintenance
or astronaut assistance. Throughout the 80s and 90s, various free-flyers were developed for testing simple
docking, rendezvous, and maneuvering tasks. In the early 2000s, MIT ran the MIT SPHERES project that
developed formation flying and navigation control systems [1]. Results from the project, due to its considerable

complexity, laid the groundwork for performing sophisticated tasks.

Figure 1.1: Astrobee next to astronaut Anne McClain

Through the culmination of previous free-flyer development, Astrobee was the first free-flyer to have a
manipulator integrated into its design and used directly for the robot’s function to manipulate objects and
stabilize itself to preserve energy [2]. Subsequently, Space Cobot, Acrobat's sister project developed at ISR,
improved on some attributes such as maneuverability and control methodologies still within the same guise
of human assistance [3]. Rather than using an arm to stabilize itself, Space Cobot is currently developing a
controller through a model predictive controller (MPC) approach to estimate not only its own inertia, but
the inertia of whatever it is interacting with. This is crucial for free-flyers, as we discuss on section 2.2.4, to

provide them with true autonomy and capability in environments where they may not have a larger structure

to depend on.

Figure 1.2: Rendering of Space Cobot

Acrobat

Acrobat began its development with Prof. Rodrigo Ventura recruiting Alexandre Rocha to provide assistance
with mechanical design, prototyping, and development work, and later on Jo3o Vale to do his thesis focused on
multi-objective optimization and kinematics. All figures below show Acrobat versions in their space operation

configurations.

Figure 1.4: Second version
made with Jodo Vale LEAer/LEEC capstone project

Figure 1.3: First version Figure 1.5: Third version for

Figure 1.3 shows a first mock-up designed in Autodesk Inventor CAD software which, like all subsequent
versions, was done to get an idea of how the geometry suggested by Prof. Ventura would be applied in practice.
After realizing the first version’s mechanical limitations and applying other optimization criteria, in collaboration
with Jodo Vale, we designed, partially constructed, and tested the second version shown in figure 1.4. These
tests were more focused on the manipulator, which we discuss in part |l. However, much of the dynamics
characterization demonstrated in this part is similar to that found in Jodo Vale's thesis[4]. Finally, figure 1.5

depicts the latest version of Acrobat which we discuss in the following section (2).

Chapter 2

Methodology

2.1 Mechanics and Dynamics

The geometry we selected for Acrobat's movement is designed to provide optimal force and moment
generation for effective movement and stabilization in all directions. Since it is designed to operate in zero
gravity environments, it is expected to actuate in bursts. This type of actuation is best suited to cold gas
thrusters which release controlled bursts of pressurized gas at known thrusts. Despite this, when considering
the complexity of designing a pneumatic system suitable for their operation, we chose to use bidirectional
thrust propellers powered by brushless motors instead for their simplicity and widespread adoption in robotics

when prototyping.

To make Acrobat easy to manufacture and assemble, a modular design approach was taken. As has been
and will be seen throughout the document, Acrobat contains a lot of brightly colored parts. These are fabricated
using Fused Deposition Modeling(FDM) 3D printing on a Bambu Lab XIC 3D printer. The vast majority of

these parts contain brass threaded heat set inserts used instead of nuts to make strong, rigid connections.

The transparent parts are made of 3 mm polycarbonate sheets cut on a table saw. They are held together
by several light blue brackets printed in PLA to form the frame on which other parts can be mounted. These
include the black parts, printed in carbon fiber PLA for added strength and rigidity, which serve as mounts for
the brushless motors as well as the green parts once again printed in PLA to serve as the base for the parallel

manipulator later discussed in chapter 5.

Figure 2.2: Rendering of Acrobat'’s free-flyer

Figure 2.1: lllustration of a threaded heat body

set insert being used with a bolt

This voluminous construction gives use the freedom to configure and reconfigure the interior of the robot
as necessary only having to replace a few parts in case we need to change electronics on the interior or change
where the filament spool is held. During prototyping, in many cases it was as easy as drilling a few new holes.
The only downside to this construction method is that the robot is only rigid when all the parts are mounted
together and tightened. However, we feel remounting panels removed for access is a worthy trad-off as opposed

to redesigning an entire frame from the ground up.

2.1.1 Space Configuration

The robot’s six DoM are derived from bidirectional thrust axes situated at the vertices of an octahedron.
Axis positions and orientations effectively give Acrobat equal movement in X, Y, and Z and equal orientation
capabilities roll, pitch, and yaw. Their distance from the geometric center also allows them to quickly produce
torques for resisting perturbations caused externally or from the robot's own operation.

We can characterize this system with matrices:

q1
= |a1 ae] - | = Agq, (2-1)

g6

where net body forces and torques are a result of actuation a and actuation signal ¢. Actuation matrix,
A, is a square matrix, meaning the robot is neither under nor over actuated, and A is full rank, meaning all
propellers are non-redundant. Thus, A is invertible . This property has favorable implications for the robot’s
control[5]. However, this project’s aim is to provide a practical proof of concept rather than a theoretical

analysis. As such, the dynamics on which we focused our efforts are those adapted to ground testing.

™~
i

Figure 2.3: Octahedron with bi-directional
thrust axes at vertices Figure 2.4: Space configuration of Acrobat

2.1.2 Ground Testing Configuration

It is apparent, when looking at Acrobat, that it cannot hold its own weight in flight when exposed to Earth's
gravity. Thus, for ground testing, we use an air bearing base, constructed with 5 mm polycarbonate sheets and

brackets with heat set, inserts that allows the robot to glide freely over a large test table.

THREADED BALL STUD

FOR EASY ADJUSTMENT
STRUCTURE

AIR BEARING
AIR SUPPLY
&0 PSI)
AIRFILM

GAP
RESTRICTION POROUS
(Rs) MEDIA

GUIDE SURFACE
Figure 2 - Flat Air Bearing

Figure 2.5: lllustration of air bearing in
operation[6]

Figure 2.6: Acrobat on air bearing base

As shown in figure 2.5, air bearings work by pushing a thin layer of air, usually 5 to 15 pm, between
themselves and a smooth guide surface. This allows for frictionless motion of objects with substantial weight.
Figure 2.6 depicts our setup, which uses a 1.1 LL paintball tank holding air at 300 bar converted by two regulators
to about 5 bar and expelled through three 25 mm flat, round air bearings. This base can last nearly one and a
half hours of consecutive operation, allowing adequate time for testing.

Since the free-flyer glides over a table, in this configuration it only possesses 3 DoM: translation over the
table plane (X and Y) and yaw (rotation about the Z axis). Conveniently, due to the way the axes have been
positioned, there are three planes where the bi-directional thrust axes are parallel to the free-flyer's own body

plane. By simply aligning one of these planes with the plane of the table, similar to how six propellers give full

6 DoM control, three propellers give full, direct control over two dimensional motion.

yaxis

Figure 2.7: Top view of highlighted axes
with base geometry aligned with the
movement plane

Figure 2.8: Aligned axes and table plane
shown in modeled testing configuration

2.1.3 System Dynamics

Knowing how the system has been adapted for testing on Earth, we now characterize its dynamics. Figure
2.7 shows that the plane aligned with the test table is an equilateral triangle with angles «; that represent the
orientation of the propellers and their highlighted thrust axes, with respect to the body frame. Assuming the

center of mass coincides with the geometric center of the free-flyer, we define the actuation matrix as follows:

Kisina; Kisinas Kisinas
A= |Kicosa; Kjcosas Kjcosas (2.2)
Kld Kld Kld

where d is the distance between the geometric center and the center of each propeller. From the geometry
discussed earlier, a; = Orad, as = 2?”raud and a3 = 4T’Trad with respect to the body frame x-axis. K; provides
a relation between the thrust generated by a propeller and the appropriate PWM signal.

To describe how this actuation translates to the test table, we now define the dynamic system. Let p € R?
and 6 € R! be the position and orientation of the free-flyer, v € R? and w € R! be its linear and angular
velocities, R € R3*3 be its attitude expressed as a rotation matrix, and F' € R2 and M € R! be the force and
torque in the body frame. Again considering that the center of mass and geometric center are coincident, the
dynamic system is as follows:

mv = Rp(0)Apu(t) = Rp(0)F

Izzd) = AM’U,(t) (2 3)

Here w is a vector of dimension 3, and each argument is the PWM signal sent to its respective propeller.

As seen in equation 2.2, the actuation matrix can be separated into Ar and A, the forces and momentum

applied to the robot by each propeller. F}, denotes the forces applied in the body frame.

The force that each propeller applies to the robot can be described in the following way [7]:

F; = fia; , with f; = Kju;, (2.4)

where ; is a unit vector that separates the force into X and Y components.

The torque generated can be described as the cross product of distance between the center of the propeller
and geometric center with force as well as a term considering gyroscopic effects induced by the propeller’s

rotation:

Mz' =7; X F,L — Tlﬁr, , with T, = wiKgui. (25)

The x operator denotes a vector cross product. Because the thrust axis, the axis of rotation, is parallel to the

plane of movement, a good approximation is that the gyroscopic effects are described by 7; ~ 0.

U; is a unit vector with the following structure:

It is useful to deduce the actuation matrix presented in equation 2.2.

To convert the forces from body frame to test table reference, the following rotation matrix may be used:

cos(0) —sin(0)
sin(0) cos(6)

Rp(0) =

Because the torque generated is the same in both referentials, the resultant rotation matrix for forces and

momentum is:

cosf) —sinf 0
Ry = |sinf cosf® 0] . (2.6)
0 0 1

Another way the system described in 2.3 can be represented is as follows:

F2><1
= R3x3A3x3u3%1
M1
L . 2.7)
Dax1 V2x1
O1x1 Wix1

10

2.1.4 Propeller Dynamics

The propeller we chose for testing was the Graupner 3D 5x3.5x3 because, to our knowledge, it was the
only 5 inch propeller with a fully symmetric profile and neutral geometry making it conducive to bidirectional
thrust. In addition, it had claims of high thrust-to-RPS ratio [8] making it ideal for bursts of thrust and low

velocity operation.

Initially, a few static tests were performed using the RCbenchmark® software. Among all the data collected,
thrust, rotation speed and PWM signals are the most important to analyze in order to design a robust control
system for the robot to later develop a dynamic model for the robot. Before we can develop it, however, we
must first study the dynamics of the propellers themselves. Their behaviour can be mathematically modeled

through the following coefficients:

T P

Here, p is the air density, D the propeller diameter, n revolutions per second, C'r and C'p the dimensionless
blade coefficients of thrust and power. We may assume p is constant in a controlled laboratory environment.
D is a fixed value. The coefficients C' and C'p are important for the dynamic modeling of the robot because

they simplify what are otherwise complex aerodynamics.

The thrust provided by each propeller can be described using a simple, linear function where variables K3

and K5 are defined as follows:

D5
pQTCp. (2.11)

K, =pD'Cr (2.10) K2=
We believe this simplification is valid for our use case because thrust will be generated in short bursts. By
substituting these variables into the propeller equations, a relation between thrust and n? of the propeller can

be established:

T = Crpn®*D* = Kn? (212) P =Cppn®D® =21 Kyn®. (2.13)

To obtain the values of C; and C),, a linear regression of thrust as a function of rotations per second

squared can be performed. The result is a slope that describes the linear relations nlz and %. Dividing the

slopes by pn? and pn? respectively, we obtain the value of both coefficients.

11

I
3= 0]
o
[o2
2 S -
0
L]
]]
— 1 . -
=3 o
‘%‘ (=7
£ &
F ool |
e O Positive thrust B
O Negative thrust
Positive RPS
. — Negative RPS |
I I I I I I I
-6 -4 -2 0 2 4 6 8

Revolutions per second squared [5'2]

Figure 2.9: Thrust as a function of of rotating speed squared, obtained in MATLAB®

The plot in figure 2.10 was obtained by plotting the thrust provided by the propeller as a function of the

revolutions per second squared of the propeller blades. As shown, there is a linear relation between these

variables.

90 T

80 — ol -

70 — -

2]
g 60 |- N
o o
g 50 — —
o
8
Z 40 °] -
o]
<
3 o
s 30 -
o
20— o O Power 7
O Power
o "
Positive RPS
10 — [+ 3 —
e Negative RPS
0 | | | 1 | |
2 -15 -1 -05 0 0.5 1 1.5 2

Revolutions per second to the power of 3 [5'3]

Figure 2.10: Power in function of square of rotating speed, obtained in MATLAB®

It is important to note that the blades generate different values of thrust for the same revolutions per
second when spinning in opposite direction, meaning they are not perfectly bidirectional. By using the slopes
obtained in the linear regression and applying formula 2.8, the coefficient of thrust for each rotation direction

is obtained.

Cr Cr

pos neg

6.17 —4.51

Table 2.1: Coefficients of thrust for clockwise and anti-clockwise rotations

12

Here we assume the local atmosphere to be at 101.325 kPa and 20 °C and, thus, p is 1.204 Icgrrf‘3
following the standard atmosphere model. The propeller's diameter is 5 ¢m and the constant K; for both

clockwise and anti-clockwise rotations is obtained through equation 2.10.

Ky, Ky,,,
464 x 1075 —3.40x 10~°

Table 2.2: K, for clockwise and anti-clockwise rotations

By analysing these values, we conclude that when the blades are rotating clockwise, there is a generation
of 34% more thrust in this direction when compared to the anti-clockwise direction for the same revolutions
per second squared. The propellers will receive PWM signals and, therefore, if the dynamics of the system are
designed to work with the thrust provided by each propeller, we deduce a function that converts these values
to their respective pulse-width modulation signal. We estimated two polynomials up to order 4 for the positive
and negative forces applied by the propeller. We made this separation due to the non-presence of a reasonably

good bidirectional thrust for the same rotation velocity. See table 2.6.

Polynomial order ‘ 1 2 3 4
Clockwise rotation 101.79 1126 1.62 1.48
Anti-clockwise rotation | 87.61 19.63 229 1.34

MSE

Table 2.3: Mean squared error of the fitting polynomials up order 4 of PWM signals as a function of thrust
provided by each propeller

It is important to note that MATLAB® indicates that the polynomial becomes badly conditioned when
approximated to order 4. Therefore, the optimal order is order 3, where the mean squared error of the

approximation is reasonably small.

1800 — -

1700 —

1600 — —

1500 — —
O Positive Thrust
O Negative Thrust
Positive Thrust (1) ,
Negative Thrust (1)
Positive Thrust (2)
Negative Thrust (2)
Positive Thrust (3)
Negative Thrust (3)
Positive Thrust (4)
Negative Thrust (4) N

PWM [1:s]

1400 —

1300 —

1200

| | | | | |
2 -1 0 1 2 3

Thrust [N]

Figure 2.11: PWM signal as a function of thrust, obtained in MATLAB®

13

2.2 Control and Navigation

2.2.1 Navigation

The navigation protocol used was based on a mix between data acquisition from ArUco markers, using
vision algorithms, and the Pixhawk 6C Mini systems. Position and orientation are extracted from a relation
between the ArUcos that map the environment and an ArUco placed on the robot. This ArUco system will be
described in great detail in a later section (5.6). Regarding the Pixhawk, acceleration is obtained through its

accelerometer and velocity by an integration that is made by one of its navigation subsystems.

2.2.2 \Vision

The system that consists in the ceiling camera reading 2 ArUco markers and determining the position of
the one affixed on the robot in the reference frame created by the one placed on the table is calibrated the
same way as the one explained in the 5.6. In order to recreate that system, the methodology described in that

section should be followed.
2.2.3 Open-loop test
To test the actuation of the propellers in open-loop, the control vector u(t) can be isolated as follows:

Fyyq
M1><1

usx1(t) = Az3R3xs(0) 7"

The value of force (in N) or momentum (in Nm) can be requested independently, as well as in a combination
of forces or force and momentum. This open-loop test allows us to verify if the robot accelerates in a desired

direction and if it is able to correctly rotate along its geometric central axis.

2.2.4 Model predictive controller

The optimal controller for the propellers is an MPC because it can handle multi-input multi-output (MIMO)
systems that have interactions between their inputs and outputs. Due to these interactions, it is often challenging
to design MIMO systems using traditional controllers such as PID. However, MPC can simultaneously control all
the outputs while taking into account input-output interactions. MPC can also handle constraints. Constraints
are important, as violating them may lead to undesired consequences. MPC has preview capabilities (similar
to feed-forward control). If set point changes are known in advance, the controller can better react to those
changes and improve its performance. To develop an MPC for Acrobat, we opted to use CasADi open-source
software as a tool for nonlinear optimization and algorithmic differentiation. The opti tool from this package

came as very useful for this goal.

System definition

To establish a mathematical relation between the forces and momentum provided by the propellers to the

change in position and orientation, we must use simple physics. The effect of the force in the position of the

14

robot is described by the following simple kinematic formulas:
Fworld(i) =m X CL(i),

a(i) = W and

~pli) —pli—1)
i) =T

where m corresponds to the mass of the robot and At to the time interval between each iteration.

The same thing happens with the effect of the momentum provided by the propellers in the orientation of

the robot:

afi) = w(i) 7§t(i — 1), and
wli) = 0(3) —Aeiz - 1)v

where J is the inertial momentum of the robot in its vertical axis aligned with its geometrical center.

Robot parameters and controller horizon

The robot and environment parameters are defined as follows:

m [kg] J[kgm®] plkgm~®] D [m]
16.341 0.394 1204 5x107°

Table 2.4: Robot and environment parameters for simulation

It it is important to keep in mind that the propellers do not generate perfect bidirectional thrust.

The actuation matrix 2.2 has the numerical value of:

0 0.866 —0.866
A= | -1 0.5 0.5
-03 =03 —-0.3

K is implicitly defined as singular and only applied once the thrust provided by each propeller is obtained

from the controller’s solver optimal solution.

With all the numerical data needed to describe the robot's dynamics, the the CasADi parameters can now

be defined. The controller’'s horizon was initialized in the following way:

15

Variable Rows Columns
Position
Velocity
Total velocity
Acceleration
Orientation
Angular velocity
Angular acceleration
Forces (self)
Forces (world)
Momentum (self)
Momentum (world)
Dynamics (self)
Dynamics (world)
Rotation matrix
Propellers actuation

N

WWWWHFEFRFRLRNNRFEFRPRPEFENRFRDN
ZwzZ2Z222222222222

Table 2.5: Horizon parameters and respective sizes

where N denotes the number of iterations in the horizon.

Controller steps

In each iteration of the MPC, the corresponding state of the robot will not match the prediction made by
the controller perfectly due to unpredictable external perturbations and the non perfect design of the robot's
dynamics and propeller behaviour. In order for the controller to work as a closed system, the first horizon state
must be defined with the navigation data provided by the robot’s sensors. The following variables are obtained

through navigation data provided by the pixhawk and ArUcO markers camera algorithms:
= position (ArUcO)
= linear velocity (Pixhawk)
= linear acceleration (Pixhawk)
= orientation (ArUcO)

= angular velocity (Pixhawk)

To enable the MPC to achieve faster solutions, the remaining variables that cannot be observed by the
navigation system can be estimated through the mathematical relations presented in the beginning of this
section. To facilitate the solution optimization of the MPC, the other horizon steps can initially be predicted to
be the value corresponding to ¢ + 1 from the previous horizon. In other words, the horizon shifts one coordinate
to the left and the initial values are obtained and derived from navigation data. The last horizon value may be
set to the penultimate value of the current horizon. Another method would be to calculate a bigger horizon
before the robot starts taking action. Then, using a smaller horizon for active control of the robot, the variables
from the initial horizon would be put into the last step of the real time horizon accordingly. This was not,

however, the approach we chose.

16

Boundaries/constraints

In order for the MPC to output realistic and usable data, a few constraints need to be assumed. Others
could allow for a safer dislocation of the robot in the test table, however, soft constraints are usually more
suitable and reliable. The most important boundary condition is the maximum input each propeller can take.
As mentioned above, the input vector w is described with the thrust provided by each propeller. The maximum
value for the thrust in the benchmark test was 3 newtons in clockwise rotation and 2 newtons n anti-clockwise

rotation. Therefore, the following constraint is added to the opti environment:

—2N < u(t) < 3N.

Cost function

The cost function is the most important aspect of the controller. It can be manipulated to make the
solution closer to the one desired within its horizon and in a faster manner, to reduce the amount of actuation
of the propellers, and to correct undesired overshoots. To make the solver, discussed next, reach the reference
values faster, the term A; may be applied. The coefficient p; weights this importance, as do p;, and py, in

position and orientation, respectively.

A1 (D) = prlpn [(2() = 2rep)? + (Y(E) = Yres)] + P12 (0(0) = Oreg)?]

To achieve a smoother actuation, the input control vector can also be added to the cost function in square

form, weighted by po.

Ay (i) = palui (i) + u5 (i) + u3(i)]

To minimize the occurrence of overshoots, the final positions of the horizon can be minimized in cor-
respondence to the reference values. This condition is weighted by ps and we chose the square form for

this.

As = p3ps, (pos(N) — posyes)? + p3, (pos(N — 1) — posyes)? + p3, (pos(N — 2) — pos,cs)?]

Last but not least, to assure that the robot reaches static position by the end of the horizon, the square of

the velocity can be added to the cost function, weighted by p4.

Ay = pafvel?(N)]
All of these parameters can be added to the actual cost function which is minimized and later used by the
solver.
N

J = [Ai(i) + Az (i)] + As + Ay (2.14)

1

17

ref denominates the desired values and ¢ the value that corresponds to each MPC-optimal solution iteration.

Solver

The solver we chose for the optimization of the solutions was the ipopt. To achieve faster solutions, we
defined a few parameters. The first is the solver tolerance, which we set to 1 x 1073. Additionally, we took
out all default prints because these are very time-costly. The aim was to achieve a control system system that
could be operated at 10Hz. With the current design, we achieved horizons of 10 iterations, 1 second in time,
in 30ms, computationally. However, it is important to note that the upboard might not stay consistent over
time due to heating and other tasks being performed by the processing unit, so rigorous testing is important to

guarantee that the solver does not last more than 100ms.
Simulation results

The cost function parameters were defined the following way:

P1 P1, P1, P2 P3 P34 P32 P33 P4
1 299 19 100 1 999999 8 7 999

Table 2.6: Cost function parameters for simulation

For a reference of [1, 0.5] in position, 0 in orientation, and initial conditions [0, 0] meters and 1 radian, we
made three plots to analyse the robot's trajectory, forces, and momentum applied, as well as the actuation of
the three propellers. Note that we chose the horizon to be bigger than the one intended for practical use, with

N = 120, equivalent to 12 seconds at 10Hz.

0.5 1 — position

0.4

Distance [m]
o
w
)

e
[N}
L

0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Distance [m]

Figure 2.12: Simulation of robot's trajectory

As can be seen in figure 2.12, the MPC naturally assumes a linear trajectory between the origin and the

rendezvous point.

18

16501 —— propeller 1

propeller 2

1600 4 —— propeller 3

1550 4

1500 4

1450 4

PWM [us]

1400 4

1350 4

1300 4

1250 4

T T T
[} 20 40 60 80 100 120
Time step

Figure 2.13: Simulation of PWM signals

The propeller actuation is very smooth and also greater in the first moments of new reference reception.
The absolute value of each propeller is considerably smaller than the maximum value that the controller was
modelled to perform at (between 1100 and 1800 ps roughly) due to the parameter py of the cost function.

Additionally, we note that a dead zone of operation for the propellers around a PWM signal of 1486.5
us is assumed. Also, as consequence of the different thrusts for the same revolutions in time in clockwise
and anti-clockwise rotations, the controller tries to compensate by assuming a higher PWM signal when

anti-clockwise rotation is used.

Obstacle avoidance

The controller can be adapted to receive obstacle information and avoid a collision with it. This information
is obtained from the camera that stays in the ceiling. For a simple test, boundary conditions were assumed to
check the response of the robot. However, for a practical approach, it is best to heavily penalize the position
of the robot once it approaches the obstacle in the cost function. Using the boundary approach, if for some
reason the robot was to be found inside of the obstacle's hit box, the controller would find itself as having an

unfeasible solution. The simplest way would be to set a hit-box around the object that was detected.

[2(i) — obstacley)? + [y(i) — obstacle,]? > hit-box radius®

Note that vision algorithms usually assume rectangle shaped boxes instead of circular ones. This information
would be updated over time, assuring that the object’s position is always up to date. In theory, the obstacle
could be avoided if it were to be either in static or dynamic position. However, a simple kinematic model could
be assumed for and obstacle in motion to better predict its position over time and guarantee that no collisions
occur.

Below is the result by placing two obstacles at coordinates [0.75, 0.48] and [0.3, 0.15], with a position

reference at [1, 0.5]. The horizon was made big enough so that it could include the desired position within its

19

position parameters. However, in a realistic application of the MPC, the horizon would be made much smaller

and most likely would not include the desired position.

—— position

0.6

0.5

0.4 4

0.3

Distance [m]

0.2 4

0.1+

0.0 1

Distance [m]

Figure 2.14: Obstacle avoidance trajectory simulation

The robot assumes a tangent trajectory to the obstacle’s hit boxes. A minor slip in the navigation system

would result in an unfeasible solution. Penalization in the cost function is surely the best approach to adopt.

1700 1 —— propeller 1

propeller 2
1650 —— propeller 3

1600 +

1550

1500 4

PWM [us]

1450

1400 4

1350 4

1300 4

T T T
[} 20 40 60 80 100 120
Time step

Figure 2.15: Actuation of the propellers in obstacle avoidance simulation

It is also interesting to observe the propeller behaviour in these condititons.

20

2.3 Programming and Architecture

2.3.1 Electronics

The electronics for the free-flyer component of Acrobat are rather simple comprising of an UpBoard serving
as the onboard computer, a Holybro PixHawk 6C Mini serving as a flight controller unit, a high FOV external
camera and three COBRA 11A ESC W/2A LINEAR BEC ESCs to control the Cobra CM-2204/28 Multirotor

Motor, KVV=2300 brushless motors responsible for its actuation.

esc }—{ Motor |

Onboard o Flight] [
Computer | | Controller ESC Motor]
5 EsC }—{ Motor |
pc ke External
Camera

Figure 2.16: Free-flyer onboard electronics

The FCU was selected because of many reasons, being some of them the high-performance, low-noise IMUs
on board, designed to be cost-effective while having IMU redundancy and a high performance STM32H743
processor. The Pixhawk series is normally selected in robotics projects because of the reliability of the software
PX4, which is open-source and full of safety conditions as well as an integrated Extended Kalman Filters.
The flight controller is responsible for sending PWM signals to the ESCs based on commands received by the
onboard computer through SSH protocol communication with the user's computer. These commands define the
amount and direction of thrust each motor provides. It also possesses an accelerometer and gyroscope which
provide acceleration and orientation values to be used by the free-flyer's control system. Due to compatibility
issues between the flight controller's software library and ROS2, in our final system we used the Holybro
PixHawk 6C Mini purely as an IMU and an Arduino Uno to send PWM signals. These issues will be discussed
in greater detail in subsequent sections.

The primary flight computer chosen is the UpBoard from Up Bridge the Gap. Its principal role is to execute
control algorithms and transmit signals to all actuators. Given its compatibility with various operating systems,
having integrated Intel Technology, high computational power, and user-friendly configuration and usage, it
emerged as the optimal choice for the prototype. Analogous to the globally renowned Raspberry Pi, it features
a 40 HAT pin with GPIO functionality. However, in our scenario, this feature was not utilized due to the lack
of support from the manufacturer to the Linux distribution Ubuntu.

The brushless motors chosen, supplied by Cobra Motors USA, are recognized as some of the most reliable
and efficient in the industry. The specific model used in Acrobat boasts a remarkable rate of 2300 rotations per
minute per 1V difference, positioning it as one of the most powerful motors within its compact size category. It
also allows for rotation in both direction, being that an important factor in the robot dynamics.

The connections in the system are represented below.

21

Ceiling Camera

| Pixhawk
use
l usBe
Ground Computer ---ssi----» UpBoard f—UsBtoSerial— Arduino -PWM pinout Motors

Power Cables
L

Pololu 5V, 5A Step-Down Voltage
Regulator Power Cables

—
k Power Cables _\/

Power Distribution
Board

Power cables
|

3 Batteries
(14.8V)

Figure 2.17: Eletrical connections

Since the UpBoard, when in the free-flyer, needs to be power by the batteries, it was needed to buy a
step-down voltage. The one presented in the graph was selected because of all the fail-safe conditions already

implemented.

2.3.2 ROS2 Architecture

ROS is a versatile framework designed to streamline the development of robotic applications. It offers
a comprehensive suite of tools, libraries, and conventions that simplify the complexities of robot software
development. ROS2 offers improved performance, enhanced real-time capabilities, and better support for
various hardware platforms, when comparing with his predecessor, ROS. The motivation to use ROS was mainly
due to its compatibility with industry-standard communication protocols and its emphasis on security and
reliability.

The simplified ROS architecture used in this project is as follows:

Sensors_Nodes
(depth and ceiling cameras and pixhawk)

Foxglove P—

Specific_Control_Nodes
Interface Control_Master (Open Loop, MPCs and 3D

| Cooling System |' Control)

Actuators_Nodes
(propellers, servos and extrusion system)

Figure 2.18: ROS2 architecture flow diagram

22

The diagram illustrates a well-structured software architecture with four key groups of ROS2 nodes. The
sensors nodes calculate positions and IMU from our sensors that are then processed in the control unit which
consists of the Control Master and the Control Nodes. This processed data guides the generation of movement
instructions for our actuator nodes. The interface plays a central role. It acts as a two-way communication hub:
receiving user commands and transmitting them to the control unit. Importantly, the control unit transmits its
calculated movement instructions to the interface, which then directly commands the actuator nodes, closing
the control loop. Finally, the interface takes responsibility for managing the cooling system, turning it on and
off as needed.

The ROS2 system isn't fully integrated into the on-board computer, although a majority of it operates
there. However, the data from the ceiling camera is processed on the ground computer. ROS2 enables every
computer connected to the same Wi-Fi network to subscribe to data being published by another machine.

Additionally, the interface utilizes Foxglove for data visualization and analysis, leveraging data directly from
the sensors.

The following figure was achieved by running the command "rqt_graph”, a ROS command for visualization

of all the active nodes, the oval shapes, and topics, the rectangular shapes.

Ipropellers

—
Jcentral \

Jcentral/pwm
Imavros
Imavros/local, ti
vrosflocal_position Nnterface_Node -| Jfeentral/desired_pose

| Imavros/local_positionfvelocity l’

[Propellers_Arduino_Node

T
e [e
fsensors_data

sensors_datafimu_data
ICnnlrv_Hasterv_N_ou:_<>{ Isensors_data/aruco_body_position ‘ ;l—
N feensors_dataffeu_lin_vel /MPC_Node

fmpc

Impcipw

Imavrosfimu

ey

3

Figure 2.19: Communication between nodes generated by ROS2 command

The /mavros topics represent the processed data from our PixHawk and the /ArUcO_pose represent the
processed data from the regular camera. Both the "MPC_Node" as well as the "OL_Node" are part of the
Control Nodes mentioned earlier. The "”/Propellers_Arduino_Node" is the node responsible to send the PWM
values to the propellers’ respective motors.

In spite of not incorporated in the architecture of the robot, it was developed an additional node to test the

connections between the UpBoard computer and the propellers as well as their bidirectionality.

Sensors Nodes

As mentioned in the electronics section, our sensor suite includes a regular camera, a depth camera, and a
PixHawk (PX4) and while currently used just as a powerful Inertial Measurement Unit (IMU), the PixHawk's
potential extends beyond this role and we aim to leverage its full capabilities in the near future.

Each of these sensors have dedicated nodes which calculate the data we use on our control unit.

23

The node responsible with contacting with the PixHawk, which is developed by the community and his
named MAVROS, gives an immense quantity of data associated with all the algorithms present like the extended
kalman filters and the controllers. The ones used are in particular the IMU data that includes orientations, linear
accelerations and angular velocities, as well as linear velocity data, that results from the integration of the

linear acceleration.

The ceiling-mounted regular camera node, developed by us, uses computer vision to calculate pose data
(positions and orientations) by looking at our ArUcO Markers, one on top of the robot and another one on one
of the corners of our table, and then calculating the relative pose of the robot to our world plane, which in this
case is our table. The only pose data we use are planar positions = and y and the orientation yaw since in our

case the robot "lives” on a 2D world which is the table.

In the next picture it is possible to visualize the perspective of the ceiling camera and some of the data, the

" /ArUcO_pose” topic, being published.

gt david@david-HP-Pavilion-Gaming-Laptop-15-ec2xxx: ~fros2_ws

david@david-HP-Pa.. david@david-HP-Pa. acrobat@acrobat-U. acrobat@acrobat-U

20452]
22365313]

0.56572671495
in degrees: [-2. 474 , -0.5391520031094325, 1.61195508588

meters: [0.9450994527325411 4 0. 998921575]
in deg -5.0625339765! N 018109851695]

meters 70656743522931, 9, 0. 43136125]
in deg -4.57725T7 , 2. 42! 547

meters
in degre:

meters 6132]
in deg 45 4639468531186]

meters - 2913033, 0.45 0770226123, ©.5493576451851863]
in deg - 19037524203, 708239259366, 3.105620203193526]

P

Figure 2.20: Ceiling camera perspective and the published data

Additionally, although not used yet, we own a depth camera to acquire the pose, this time, position z, y
and z and roll, pitch and yaw of the Stewart Platform which also as an ArUcO Marker in it. This pose, will

eventually be used by our 3D control node.

24

Control Unit

PWM Signal
R 8ha Algorithm Selection
(value in microseconds)

Sensor Data
(IMU and Aruco Pose)

pe= Desired Position / Orientation s

Control Master ensor Data > MPC

3 PWM

(brushless motors)

[= Forces / Momentum/Timer

Open Loop |e— .. :.
2PAM

— —

6PwN —

PWM Desired Position
(servo motors) - Sensor Data & Orientation

Cl"ar'gle Rate

Stewart Platform Control

Figure 2.21: Schematic of the control unit in ROS2

Aforementioned the control unit is subdivided in two components, one of them being the control master
which act as a intermediary between the user (interface) and the specific control nodes. Whenever it receives
the user command from the interface node, it analises it and depending on what the user wants to achieve, send
this data, as well as the sensor data it receives directly, to the necessary control node, after the calculations in
the specific control nodes, it send back to the interface the data for the actuators such as PWM values for the

propellers motors. The other component are the specific control nodes.

Firstly the open loop node which received an array of forces in the x and y axis as well as a torque around
the z axis, and from there calculated the necessary PWM values for the robot to move accordingly to these
instructions. The forces can be relative to the robot referential or the world referential, depending on what the
user whats to achieve. In the case of the world referential, the node also received the orientation of the robot
relative to the world, to then use on the rotation matrix. This node is useful to test our actuation matrix and
conversion from thrust to PWM, to then use them in the MPC. The MPC node received all of the PixHawk
data previously mentioned as well as the pose of the robot provided by the ceiling camera, besides a desired
position and orientation for the robot to be in the world plane, the table. Then it proceeds to calculate the

necessary PWM values to reach them.

25

Interface

Sensor Data
| (IMU and Aruco Pose)
I ™
Foxglove J
//,- . v
User Input for algorithm (: ,
P 8 Interface » Algorithm Selection
selection
jl
6 PWM __J ‘ 3 PWM
(servo motors) (brushless motors)

Stewart Platform
Maestro

Arduino

Figure 2.22: Interface Node Communication in ROS2

Currently, users interact with the robot through a text-based interface on a computer terminal. The
interface first prompts the user to choose between control modes: open-loop control, MPC (Model Predictive
Control), or full shutdown. If the user selects open-loop control, it then asks whether to apply forces relative to
the robot's reference frame or the world reference frame. Subsequently, it prompts for the values of forces and
torque, and a timer duration for applying them. In MPC mode, it only prompts for desired positions, along

with a desired yaw angle.

As a safety measure, because it's the node that directly contacts the actuators, it has a full shutdown
function by turning off all propellers. It achieves this by publishing a Pulse Width Modulation signal of 1486.5
microseconds, which corresponds to the neutral position for the propellers. Following this, it proceeds to
shut down all other running nodes. Finally after receiving back from the control master node the actuation
instructions, it redirects them to the actuation nodes, notifying the user of all the PWM values published.

[INFO] [1717521917.u443398307] [Interface_Node]: Interface node has been started.
For OL press 1, for MPC press 2 and for FullShutdown press 3: 1

For references relative to the world frame press 1, otherwise press 8: ©
Enter force_x (e.g. 2.8): 2.8

Enter force_y (e.g. 0.8): 0.8

Enter torque_z (e.g. 2.0): 8.0

Insert a period of time in seconds to apply the force (max 3.8): 3.0

[INFO] [1717521927.428388210] [Interface_Node]: Publishing pwm: "[1U86.5 1650.61451342 1269.U9662753]"
[INFO] [1717521930.430u57212] [Interface_Node]: Publishing pwm: "[1486.5 1U86.5 1486.5]"

Figure 2.23: Interface for open loop

26

Actuators Nodes

For the moment, the only actuation node incorporated in the ROS2 Architeture is a node that acts as
an intermediary between the interface and the Arduino, which controls the propellers. Whenever this node
receives an array of three PWM values, one for each propeller, it send the array through serial to the Arduino.
As previously presented in the electronics subsection, MAVROS has the capability to transmit the PWM to the
motors via the PixHawk. However, due to the unique geometry and propeller orientation, coupled with the
inability to modify or override safety conditions, arming the Pixhawk was not feasible. These adaptations are
slated for future implementation, given that there is no time constraint, which allows for a more comprehensive
understanding of all the software in the FCU. In the near future we intend to add separate nodes for the

actuation of the Stewart platform and the extrusion system.

27

Chapter 3

Results

The complete fabrication of the prototype facilitated the execution of several tests on an air bearing table.
These tests were designed to verify the accuracy of the robot model and to evaluate the performance of the
controllers and the printing system. However, numerous delays and practical issues arose due to the malfunction
of certain components. For instance, the air compressor, which was essential for filling the compressed gas
cylinder that powered the pneumatic system, failed completely. Additionally, there were challenges in configuring
the PX4 prior to the decision to switch to an Arduino. These setbacks limited the team'’s ability to conduct
extensive tests and collect data for future analysis. Despite these challenges, we executed some open loop
commands. Although the data from these tests was not preserved, the tests were filmed, enabling some

qualitative analysis and discussion.

3.1 Open Loop testing

For the Open Loop Tests developed on the table, the objective was to test the validity of the equations
developed in 2.1.3. Firstly, the equations have some approximations when compared to the real model. The
geometrical center of the free-flyer doesn’t coincide with the center of gravity of the robot which creates some
deviations from the ideal actuation of the propellers, when the input is to develop a certain force along one the

axis of the body.

28

(a) Starting Position

(b) End Position

Figure 3.1: Open Loop Test

As observed in the two images, although the majority of the robot's movement was along the x axis,which
was the axis corresponding to the open loop movement request, there was a significant change in orientation.
This can be attributed to the influence of the Stewart platform and the compressed air cylinder on the robot’s
center of gravity. This observation indicates that the Model Predictive Control (MPC) will require a more

rigorous tuning of the orientation variable, as it is the most susceptible to disturbances.

29

Part Il

Parallel Manipulator

30

Chapter 4

Background

Parallel manipulators are a class of closed-loop kinematic mechanisms where the end-effector is connected
in parallel to the base by multiple kinematic chains. Series manipulators, like robotic arms, suffer in terms of
precision as the error of each actuator stacks on the next. This means that for a 6 DoF series manipulator the
total error, assuming all actuators are the same, is six times the error of an individual actuator. Because all
actuators of a parallel manipulator connect directly from the base to the end-effector, its total error, no matter
how many actuators are used, is that of a single actuator. Parallel connection also provides greater stiffness

and payload capacity at the expense of workspace volume.

‘The mobile platform

B-frame ‘The base platform 'I‘crank arm
Figure 4.1: Example of a . .
Delta Platform being used on Figure 4.2: lllustration of a Figure 4.3: Schematic of a
a 3D printer[9)] Stewart-Gouge platform|[10] rotary Stewart platform[11]

The most common parallel manipulator is the Delta platform seen in a wide variety of 3D printers like
the one shown above in figure 4.1. It possesses 3 legs of fixed lengths connected to guide rails where they
independently move to provide 3 degrees of translational freedom. The Stewart-Gouge platform has 3 additional
DoF as it possesses 6 linkages whose lengths vary to provide roll, pitch and yaw in addition to translation as

seen in figure 4.2.

A common variant of the Stewart-Gouge platform in the field of robotics is the rotary Stewart platform
seen in figure 4.3. Instead of the linear actuators seen in figure 4.2, through the rotation of six pairs of arm-leg

segments, the total lengths from the base to the platform vary providing motion in 6 DoF.

31

Acrobat

In its prior development, Acrobat adopted the rotary Stewart platform using 6 servos. Their wide adoption
in the robotics industry makes them appealing for development in contrast to linear actuators used in the
classic Stewart-Gouge platform configuration. The main focus of Jo3o Vale's thesis was on the rotary Stewart
platform, its calibration and its movement potential. In it, he laid out the inverse kinematics and other useful
tools such as workspace volume estimation. Using his work as a guide, as well as Alexandre Rocha's experience
learned from the previous design seen below in figure 4.4, we developed our own rotary Stewart platform and

the framework for making it function.

Figure 4.4: Previous Acrobat version rotary
Stewart platform

Figure 4.5: Old version manipulator being
calibrated and tested

32

Chapter 5

Methodology

5.1 Mechanics

Below is the latest design of our rotary Stewart platform which provides six degrees of freedom through
the use of six actuated arms-leg pairs that connect from a fixed base platform to a mobile platform. The arm
is the shorter segment, directly actuated 5 inch (approximately 127 mm) segment comprising of a 2 smaller
segments connected by a coupling nut. One is a 2 inch rod end bolt whose end serves to mount a ball joint
and the other is a 3 inch connecting rod using a 3D printed hub with a threaded heat set insert to mount to
the aluminum servo horn using M3 bolts. The leg is the longer segment comprising of a 12 inch (approximately
305mm) connecting rod linking the end of the arm and mounting point of the platform with ball joints. All
connections to the ball joints, the ball joints themselves, and the threaded insert in the servo hub use 10-32
thread possessing a diameter of -3 of an inch (nearly 5mm). To reduce vibrations and the risk of connections
becoming loose, all threaded connections except for those connected to the platform were treated with high

strength thread locker.

Figure 5.1: Latest rotary Stewart platform design

33

The ball joints have a maximum swivel range of 50° while the base faces are angled inward by 19.47°. This
means that if the ball joints on the platform were mounted parallel to the plane of the platform they would
only have around 5° to move in one of the tilting directions. To alleviate this, their mounting points on the
platform are also angled upward by 19.47° to allow for the full 25° of tilt in either direction.

For its printing capability, the manipulator boasts a Smart Orbiter V3 [12] FDM direct drive extruder
equipped with a 1.8 mm Bondtech CHT nozzle. At first glance, considering that the manipulator will be
mounted to a mobile free-flyer, a direct extruder may seem like a poor choice. After all, the stepper motor
which drives the filament is connected directly to the hotend increasing the inertia of the end-effector. However,
using a Bowden type extruder, where the filament driving stepper motor could be placed inside the robot’s
body, presents feeding concerns when considering how much plastic will be extruded from a 1.8 mm nozzle
using 1.75 mm filament. This, along with the rotary Stewart platform’s unusual twisting movements and longer
path from the spool to the hotend than most conventional FDM printers makes filament skipping through
the drive gear or breaking in the Bowden tube a likely scenario. Typical direct drive extruders weigh around
250 g whereas the Smart Orbiter V3 weighs only 175 g and pushes filament with a force of 6.5 kg[12] making
it one of the lightest, strongest extruders of this type on the market. However, its most important feature, and

ultimate deciding factor, is its heat break.

Temperature [C]
250,000
221.250
192,500
163.750
135.000
106.250
77.5000

48.7500

20.0000

Figure 5.2: Thermal simulation results depicting heat break
between the hotend and heatsink with fan turned off[12]

Seen above in figure 5.2, are the results of a thermal simulation of the hotend. They show that even with
the heatsink fan off, its temperature stays below 50 °C. Since the heatsink serves as a mounting point, this
means that it can be mounted on 3D printed parts. In fact, the platform as shown in figure 5.1, with the
depicted ArUcO marker, was printed on a Bambu Lab X1C 3D printer in black carbon fiber PLA and white
generic PLA. This property made prototyping vastly easier, and, as will be seen later on, the ArUcO was usable
for calibration of the manipulator.

The final component mounted on the platform is an Intel® RealSense™ Depth Camera D405 stereo camera.
It is mounted such that the tip of the extruder is 7cm away from the lenses at the beginning of the stereo
camera’s 7 to 50 cm range. The camera only weighs around 50 g making it a worthy trade-off for a camera

that can provide sub-millimetric precision and real-time positioning and calibration.

34

5.2 Design Parameters

Before establishing the design parameters of the current iteration of the Stewart platform, it's important
to highlight that the mathematical description adopted for the manipulator does not accurately portray its
real-world counterpart. However, in the light of the inverse kinematics, only a simple translation of the desired
pose is needed to adapt between the two. A similar simplification of the model might not always be an option
depending on the design of the Stewart platform, for it might be impossible to adapt between them or it might

prevent the modeling of certain constraints.

Figure 5.3: Design parameters of Stewart's Figure 5.4: Design parameters of Stewart's
base platform mobile platform

Figures 5.3 and 5.4 depict the design parameters of the current iteration Acrobat’s Stewart platform. The
translucent polygons illustrate the base and mobile platforms described by the mathematical model. The base
platform is defined by its origin, Oy, radius, 1, anchor points, By, and the angle between the revolute joint's
orientation in space and the xy plane, ¢,. The mobile platform is defined by its origin, O,,, radius, r,,
anchor points, M}, and the angle between the ball joint’s orientation in space and the xy plane, ¢,,,. Each
Revolute-Spherical-Spherical arm is defined by its anchor point, Hy, the length of the rigid link that connects
By, to Hy, h, the angle between this link’s orientation in space when in the neutral position and the z axis,

Bk, and the length of the rigid link that connects Hy to My, d.

The anchor points of the manipulator's platforms and arms can be determined using the above parameters.

The base platform’s anchor points, By, are calculated as:

T o | E£L
By = [rbcos(ﬁb) rpsin(6p) 0} Op = % + (-1)*d, (5.1)
The mobile platform's anchor points, My, are calculated as:
T 9| kL
Mp,=T+R [rmcos(ﬂm) rp5in(0,,) 0} Om = % + (-1)*dy, (5.2)

T
where T = (0,, — Op)T = [a: y Z] is the translation and R € R3*3 is the rotation matrix which

define the mobile platform’s pose p.

The arms’ anchor points, Hy, are calculated as:

35

sin(Br)sin(gp,,)sin(ay) + cos(Br)cos(ay)
Hy. = By, + h | —cos(Bx)sin(¢p,)sin(ax) + sin(Bg)cos(ay) (5.3)

cos(¢p,)sin(ag)

_ 2[5

on, = (1) py B = 3 + (=1)*8y (5.4)

where «, is the angle of each revolute joint.

Table 5.1 presents the design parameters of the current iteration of Acrobat’s Stewart platform, while figure

5.5 shows a 3D plot of the manipulator as described by its anchor points.

Parameter | ry [mm] rm [mm] dy [rad] dm [rad] d[mm] h[mm] ¢, [rad] ¢m, [rad] Bo [rad]
Value ‘ 185.89 81.68 0.162 0.209 333.35 127.00 0.340 0.340 1.571

Table 5.1: Design parameters of ACROBAT's current manipulator

0.35
0.3
0.25
0.2

N 015

0.1
0.05

-0.05

Figure 5.5: MATLAB 3D plot representing the manipulator used for inverse kinematics

36

5.3 Inverse Kinematics

The previous analysis has demonstrated that the pose of all the anchor points can be derived by knowing
both the end effector pose p and the angle of each revolute joint ay. Given the configuration of the Stewart
platform, inverse kinematics can be applied to compute the latter variables from the former [5]. The resulting

inverse kinematics equation is:

L2 (2 _ p2
ay = arcsin Il =(d" = A7)) _ arctan2(by, ax,) (5.5)
Vaz + b3
where
ix = My, — By, (5.6)
ar = sin(Br)sin(dp,)ix'™® — cos(Br)sin(op,)ix) + cos(p,)ir?) (5.7)
by = cos(ﬁk)ik(w) + sin(ﬁk)ik(y) (5.8)

5.4 Workspace

The workspace W of a manipulator can be defined as the set of p that the end effector can take while

satisfying various constraints. Generally, three types of constraints restrict parallel manipulators:

1. Constraints imposed by the actuators;
2. Constraints imposed by the passive joints;

3. Constraints imposed by the mechanical interference of links.

The work presented in (Vale, 2021), which focused on the first type of constraints, is now expanded to
model the other two, taking into account the current configuration of the manipulator.

As discussed in the mechanics section, each leg of length d has a passive spherical joint at both ends,
with a maximum ball swivel of 50°. This means that the angle between the bearing’s normal vector and the
joint's orientation is restricted to a maximum of 25°. However, the bearing's normal orientation can't be fully
described, as there is a degree of freedom that cannot be accounted for. Specifically, this degree of freedom
corresponds to a rotation of the leg rod along its longitudinal axis, which does not result in a variation of the
end effector pose p. This constraint is addressed by analyzing the angle between the leg vector and the joint's
orientation. Considering the orthogonal relationship between each leg and its corresponding bearing’s normal
vector, the allowed range for this angle is determined to be [65,115]°. To verify whether these constraints
are satisfied for a given p, the swivel angles at both the mobile platform’s anchor points, 8,,,, and the arm'’s

anchor points, 6y, , must be computed:

T
. 1
O, = arccos Ty oy, X 180 (5.9
[Ty ||, | T
—hp, \T 1
0p, = arccos (nh’“’“> X 180 (5.10)
|nth - hmkl T

37

where n,,, and np, are the orientations of each mobile platform’s and arm’s joints, respectively, and h,,, is

the leg vector, defined as follows:

T
Ny, = <R+ [(_1)k—1 sin(Bx(k)) (—1)" cos(Bx(k)) sin(qu)] > (5.11)
Np, = {(—1)k—1sin(ﬁk(k)) (_1)k cos(Bx(k)) sin(¢b)] (5.12)

Rmy, = Hi = My, (5.13)

In the current configuration of the manipulator, the third type of constraint is only verified by the legs,
which may intersect with the propellers in a small set of p. A simple approach was adopted to model these
constraints, where each propeller, indexed by n € 1,...,3, is enveloped by a sphere centered at S,, with radius
r. Intersection analysis involves calculating the scalar projection of vector pg,, connecting each anchor point

M, to the sphere center S, onto the leg vector by, :

t = on T (5.14)
[Pl
dist = | My, +t - Bum,, — Sal| (5.15)

An intersection is identified if the projected point lies within the leg vector’s span (1 >t > 0) and its
distance to .S, is less than or equal to 7,,. This radius should not be less or equal to that of the propeller’s

radius, as it should also account for the radius of the leg rod.

Figure 5.6: Rejection zones for the manipulator’s legs

38

Figure 5.6 presents the rejection zones for the legs of the Stewart platform, being the red and blue cones
illustrative of the constraints set by the rod end bearing joints and the black spheres illustrative of the constraints
set by the mechanical interference with the propellers. With all the constraints modelled, the total workspace

volume estimated is of 14.836 dm.

5.5 Electronics

The manipulator’s electronics are comprised of the same UpBoard onboard computer from section 2.3.1, a
Sony Playstation Eye external camera, an Intel® RealSense™ Depth Camera D405 onboard stereo camera, a
Smart Orbiter V3 FDM extruder, a Pololu Micro Maestro servo controller, and six DSS-M15S 270° servos

motors to actuate its arms.

Servo Onboard On-board
Controller Computer Camera
-~
Extruder PC External
Camera

Figure 5.7: Manipulator electronics schematic

Communication with each servo is done via PWM where, according to DSS-M155 documentation, a PWM

of 500 ps rotates the servo to —%’r radians and a PWM of 2500 ps to %” radians. Ideally, one would actuate

each servo to 0 by setting the PWM to 1500 ps, and install the servo horn. Unfortunately, in practice, given
the servo’s geared system for installing the horn,an angle offset between the servo horn and the neutral Orad
position will be introduced. To compensate for this, an offset PWM value, denoted as qg, is determined for
each servo k. This value, typically close to 1500 ps, represents the PWM signal required to achieve a perceived
neutral horn position. With that, given a desired actuator angle ay, the corresponding PWM input g for the

k-th servo is calculated as:

0

A
qr = q + (_1)197(]6%

A (5.16)

where % is a ratio of PWM ps per radian. In the case of the used DSS-M15S, % = 2000

Besides the ground, power and PWM pins found on typical servos, the DS5-M15S also possesses a feedback
pin allowing us to compare the desired position sent and the actual position where it arrived.

The Micro Maestro controller is used as a communication layer between the on-board computer and servos,
since directly controlling the six servos requires a large number of GPIO pins. The onboard computer can send
messages through serial to communicate with the Micro Maestro, being the most notable messages the Set

Target and Set Speed, both present in the Maestro documentation.

The manipulator's end effector is equipped with an Intel® RealSense™ D405 stereo camera connected to

39

the on-board computer. This camera allows for two functionalities:

1. Upon given the instruction to start printing, the initial position of the mobile platform is found and
calibrated through the use of ArUco markers placed on the build plate. This process will ensure that the
platform is parallel to the build plate and distanced from it by half the value of the nozzle diameter. Once
the initial position is determined, the on-board computer can calculate the translation vector and rotation
matrix required to transform each point describing the object to be printed to the desired position that

the Stewart platform must take.

2. The camera's stereo lens allows for depth information to be retrieved, which can be used for obstacle
avoidance. While translating, if the camera is pointing in the direction of the translation, the robot will

be able to detect possible collisions and evade them by communicating with the MPC.

The Sony Playstation Eye is an external camera which will be used for a computer vision calibration system,

details of which will be discussed in the next section.

5.5.1 Extruder Electronics

Finally, responsible for Acrobat’'s 3D printing capability, we will discuss the Smart Orbiter V3 and its use in
the project. This extruder is advertised as coming with its own tool board with several advantageous features
like automotive inspired circuit protection, high-end stepper driver, sensor inputs and even an accelerometer[12].
Among these, the accelerometer was the most exciting as it could be used to make a robust control system
using both vision and acceleration data quite similarly to how it is described in section 2.2.

To implement the SO3 tool board, however, two issues arise with the first being that it simply is not yet
available. Despite this, there are other tool boards in the Orbiter ecosystem with similar features which could
be used instead. The second, more foreboding issue is that 3D printers are commanded by .gcode files which
are, in almost every case, parsed by Klipper[13] or Marlin[14] firmware which tells the machine how to move
its actuators. Besides the possible compatibility issues between these firmware options and the servo motors we

selected, there aren't any readily available slicers capable of generating .gcode for 6 DoF systems.

Figure 5.8: Prototype circuit for controlling Figure 5.9: Smart Orbiter V3 extruding
the extruder plastic from a 1.8 mm nozzle

40

Due to this, we made our own circuit to control the extruder using an Arduino Uno. There are three parts
that need to be controlled on the extruder: the stepper motor, heating element, and heatsink cooling fan. Of
these three, the last was easiest to control by negating to provide PWM and simply connecting the PWM pin
to a constant 24V power supply keeping it always on.

The stepper motor was also fairly easy to control using a DRV8825 stepper motor driver and the AccelStepper
library in the in the Arduino code. Stepper motors are controlled using steps where coils with two pins each
are powered on and off causing the motor to rotate. In our case, the stepper motor has 2 coils with 2 pins
each. For a full step, the coils are powered sequentially with coil A fully energized followed by coil B being fully
energized resulting in 2 steps. Operating in full steps, however, results in jittery motion. Using a stepper motor
driver mitigates this by allowing for microstepping. For example, in quarter microstepping coil A starts powered
to 100% with B at 0% then A moves to 75% with B at 25% and so on until A is at 0% and B at 100%
signifying 1 full step in 4 smaller increments. The creator of the SO3 extruder was kind enough to provide
direct ratios for one-sixteenth microstepping so this variation is what we used the most during development. To
send commands, two pins, STEP and DIR, were connected from the DRV8825 to the Arduino Uno providing

stepping and direction information respectively.

6V

Stepper motor *

buzzer
Al -
D

; N Channel
Enhancement type

A2 G MOSFET

rr M S
v._—

Bl B2 ‘

Figure 5.10: Two coil stepper motor -
diagram

Figure 5.11: MOSFET use case example

By far, the hardest element to control was the heating element. While the stepper motor is powered by the
stepper motor driver which is connected to the power supply, the 72 W heating element needs 24V power
directly. If we were to simply connect it directly with no control, the heating element would receive too much
current, heat up too much and become a fire risk. To control it, we added a MOSFET to the circuit.

MOSFETSs have 3 gates: source, gate and drain where gate activates or deactivates the connection between
source and drain. In the example seen in figure 5.11, an N Channel enhancement type MOSFET, the same
type as in our circuit, is used as a switch to activate or deactivate a buzzer. If the 3V connection to gate is
active, source and drain are connected providing ground and the buzzer turns on. If the connection is inactive,
ground is disconnected and thus the buzzer turns off. In our case, the buzzer is a heating element connected

to a 24V power supply and the MOSFET gate is connected to one of the Arduino Uno's PWM pins.

Heeding to SO3 creator Rébert Lérincz's warning to never fully power the heating element, we made sure

41

to place a limit on the PWM duty cycle to never surpass 93%. We also programmed a simple PID controller
such that a desired temperature could be set and maintained. In fact, to substitute .gcode, we created our
own type of command for feed rate and temperature on the extruder. For example, if "V10T200" is sent to
the Arduino over serial, the stepper motor will rotate such that it feeds enough plastic for a line printed at
10mms~! and the temperature will be set to 200 °C until the next command is sent. For more details, the

Arduino code corresponding to this section can be found in appendix ??.

It is important to mention that the temperature readings from the thermistor mounted on the hotend used
for the PID controller could be inaccurate. To read them, we amplified its analog signal using a combination of
resistors along with the Aruino’'s 5V supply and fed it directly into one of its analog pins. However, because we
intend to print in PLA which has a large interval of acceptable printing temperatures we deemed the readings

likely sufficient.

5.6 Vision and Calibration

As seen in the previous section, the existence of the ¢ offset of each servo makes it necessary to have a
calibration procedure for the manipulator, since the given manipulator pose p will not match the observed
one p’. To retrieve p’, a single camera computer vision system is implemented in conjunction with the use of

ArUco markers.

Figure 5.13: Proposed alternative of the

Figure 5.12: Standard ArUco Marker ArUco marker

ArUco markers, characterized by their square shape and binary-coded black-and-white patterns, facilitate
pose estimation through computer vision algorithms. These algorithms leverage the unique encoding of each
marker to determine not only their presence but also their position and orientation in the camera's reference
frame. To enhance positional accuracy, an alternative marker design proposed by (Bocco, 2021) was employed.
This design integrates a standard ArUco marker within a chessboard-like pattern, enabling the use of corner
subpixel algorithms for refined position estimation. Figure 5.12 shows the standard version of the marker, while
figure 5.13 shows the enhanced marker. This approach for pose estimation requires for both the marker size

and the camera intrinsic parameters to be known.

42

5.6.1 Camera Calibration

The process of determining the intrinsic parameters of the camera, such as the intrinsic matrix and distortion
coefficients, was accomplished through the use of a ChArUco board and the OpenCV computer vision library.
A ChArUco board is a calibration pattern that combines a chessboard and ArUco markers, providing a robust
calibration target. Multiple images of the board were captured from various perspectives, and OpenCV functions
were utilized to detect the board, extract chessboard corners, and identify ArUco markers. These data points
were then processed through a mathematical optimization process to estimate the camera’s intrinsic parameters,

including focal length, principal point, and distortion coefficients.

5.6.2 Manipulator Calibration

Figure 5.14: Detection of both Aruco Markers by the external camera

When using OpenCV, a rotation vector and a translation vector are retrieved for each detected marker.
The rotation vector, expressed in Rodrigues form, represents the marker's orientation relative to the camera
coordinate system and should be converted into a standard rotation matrix. The translation vector, also relative
to the camera coordinate system, quantifies the marker’s displacement from the camera's origin. As the pose p
is defined relative to the manipulator’s reference frame, two ArUco markers were required. One marker was
positioned 3D printed onto the mobile platform, while the second was affixed to the face of the base body that
is oriented parallel to the mobile platform’s neutral position. While this means that, in certain positions, the
camera might not be able detect the base marker, as it can be obstructed by the platform, the base marker’s
position will not change, meaning that at least one reading should suffice. This second marker establishes the
origin and reference frame for determining the position and orientation of the first marker.

Let Th and Ry denote the translation vector and rotation matrix, respectively, of the origin marker with
respect to the camera frame. Similarly, let T7 and Ry represent the translation vector and rotation matrix of

the mobile platform marker, also with respect to the camera frame. The translation vector Ty_,1 and rotation

43

matrix Rg_,1, which describe the pose of the mobile platform marker in the reference frame of the origin

marker, can then be expressed as follows:
Ro1=Ro" Ry To1=Ro" - (T1 —To) (5.17)

However, as clearly seen in figure 5.14, neither marker is placed of the origin of its respective platform,
which means a translation vector is required for each marker to account for this offset. If T, and T, represent
the displacement vectors from the base platform origin and the mobile platform origin to their respective
markers, then the transformation of coordinates from the marker reference frame to the Stewart platform

reference frame can then be expressed as follows:

P =Tos1—Tp— T, (5.18)

This transformation enables the determination of the actual mobile platform’s pose p’, which can then be
compared to the desired position, p.

The calibration methodology, developed by Jodo Vale, employs a two-stage approach. Initially, a dataset
comprising n distinct end effector poses p is generated. For each p, the corresponding actuator angles, ay,
are determined via inverse kinematics. PWM values corresponding to each ay, are then calculated and the
end effector pose is set via serial. The actual end effector position, p’, is measured using a single camera
system. The second stage involves an optimization procedure. This procedure aims to minimize the discrepancy
between the observed and estimated leg lengths of the Stewart platform. The optimization utilizes the acquired
p’ data and an initial estimate of the platform parameters and servo offsets, ¢, to refine these estimates,

ultimately enhancing the system’s positional accuracy.

44

Chapter 6

Results

With the Stewart platform built, two primary tests were conducted:

1. Translations Test: This test evaluated the platform's ability to perform slow translations between points,

simulating movements required for additive manufacturing at typical printing speeds;

2. Position Error Evaluation After Manual Calibration: This test assessed the pose accuracy of the platform

after a manual calibration procedure.

6.1 Translations Test

The translations test involved commanding the platform’s mobile platform to move between two predefined
points at speeds comparable to those encountered in FDM technologies, [50 mm\s, 150 mm\s]. A simple
control scheme was implemented, directly specifying the desired initial and final p and the desired manipulator
velocity. However, execution of this test at desired printing speeds resulted in significant oscillations of the
end effector. This undesirable behavior highlighted limitations in the current Stewart platform configuration,
primarily stemming from inherent deadband in the actuation system.

Two primary factors contribute to the overall deadband: Electrical Deadband of Servos and Mechanical

Deadband.

Electrical Deadband

Each servo possesses an electrical deadband, €,, which represents the minimum change in the PWM signal
required to result in a change of the servo’s position. This electrical deadband is usually implemented as a
way to reduce the effect of noise present in the PWM signal, which could lead to a servo constantly trying to
adjust it's position in order to achieve its ever changing target. The employed DSS-M15S servos exhibit an ¢,

of 3 ps. This corresponds to an approximate angular resolution, pservo, calculated as:

Pservo = Ginq (61)

For the DSS-M15S servos, this resolution is approximately 0.405°. Preliminary testing suggests that this
resolution, even without considering mechanical deadband, is insufficient for achieving the precision required for
3D printing applications. For example, when starting from its neutral position, the mobile platform needs to be
instructed to translate at least 4.48 mm in the z direction for all servos react to the change in PWM. This
distance is about 2.5 times the nozzle diameter. If the translation was of lower calibre, the resulting position

would not be accurate, as some of the servos did not experience enough of a change in the PWM to react.

Mechanical Deadband

The mechanical components of the Stewart platform, specifically the linkages comprising each arm and the
servo gearboxes, introduce additional deadband. Physical gaps and backlash within these components allow for
a small range of motion in the mobile platform before any servo actuation occurs to stop said motion. The
experienced mechanical deadband is of approximately 12 mm in all directions. While this value is influenced by

factors beyond gearbox backlash, it appears to be the dominant contributor.

6.2 Position Error Evaluation After Manual Calibration

To perform the calibration of the Stewart platform, initial estimates for the manipulator's parameters must
be provided to the optimization function. The initial estimates for the servos’ calibrated PWM (qg) were
determined visually, by judging whether the servo horns where close to their neutral position. The remaining
parameters were initialized using values retrieved from the CAD model.

The calibration process involved capturing the platform's pose at 200 randomly generated points within a
defined workspace. The maximum allowed translations in each axis was of 80 mm and the maximum allowed
rotations in each axis, using the zyz extrinsic convention, was of 17.2°. After acquiring the set of observed
points, p’, the optimization problem was ran.

However, the calibration procedure failed to provide an accurate estimation of the desired parameters, for
the precision error in the observed points was too great. Comparing the set of obtained poses p’ against the
desired poses p resulted in a root mean square error of approximately 20.7 mm. While the deadband issues
discussed previously contribute to this error, the accuracy of the vision-based pose estimation system also
comes into play.

The employed system, utilizing a single camera and ArUco markers, exhibited acceptable accuracy for
position estimation in simplified scenarios (approximately 0.2 mm error). However, orientation estimation
proved significantly less reliable, with errors reaching 1°. When more complex scenarios are ran, the accuracy
of both tend to worsen. To further degrade the estimation precision, the camera had to be placed significantly
far from the platform to allow the capture of the entire workspace. This increased distance resulted in the

capture of images that were more prone to error when computer vision algorithms were applied.

46

Part 11l

Free-Flyer with Manipulator

47

Chapter 7

Methodology

The combination of the two systems explained previously appears as a state of the art idea that could

revolutionize the usage of additive manufacturing in many industries.

The combination of the dynamics and kinematics of both systems allows to simplify the controller to a
unique model that is focused on the desired position of the end-effector only. With the constraints design it is
possible to achieve a system where both the free-flyer part and the Stewart platform act according to same
reference values. When tested on the table, these two systems would deposit material on a build plate mounted
perpendicularly to the plane of the table. This means that prints, likely with supports along the way, could
expand horizontally potentially encompassing much of the nearly 6 m? table allowing adequate space to test
lattice patterns likely used in space for large structures. With this evolution, the idea of a complete robot with

a system that can act in a limitless space and manufacture a given object by printing is achieved.

7.1 Control

The printing system of ACROBAT will follow the schematic below:

48

Move to the start position
with propellers

Move to new) Calculate new
position position

Anchor Mode <

y

Stewart Platform and
Extrusion System start —
following toolpath

New point out of
reach of stewart
platform?

Extrusion and Stewart

 —
ves OFF

~

NO

Figure 7.1: Printing System Schematic

This is an ideal case for the first iteration of this system, allowing to manufacture a 3 dimensional object
on Earth with bigger dimensions than it is possible by any common 3D printer. In this version, there are two
separate controllers active on the robot: one for the free-flyer and one for the Stewart platform. If the free-flyer
controller has the ability to perfectly absorb all of the disturbances that the Stewart platform may generate
through its own motion, then this system would be in itself ideal. However, this is not what is expected to
happen in reality. A single controller which has both the free-flyer system and the Stewart platform modelled
together could better guarantee that the end-effector stays in place so that the object being printed has minimal
defects.

In the future, the main objective is to develop a control algorithm that follows a tool-path reducing the use
of an anchoring system, allowing the free-flyer to be more active in the manufacture process and improving the
velocity of the system. This is, nonetheless, much harder to perform. An initial step in this design development
could be to neglect the Stewart platform’s mass. This allows to simplify the kinematics of the overall system.

After testing the implementation of this design, add these missing kinematics.

49

Conclusions

To sum up, we made significant modifications and enhancements to the initial physical model of Acrobat
based on insights we gained from previously developed systems. We completely re-engineered and built the
free-flyer structure, including the test base with air bearings and the pneumatic system.

All the electronic components for the robot were procured and integrated. We made minor modifications
to the original plan, such as the use of an Arduino instead of the PixHawk as a flight controller, for this system
to ensure a functional Flat-Sat within the available time frame. This allowed us to finalize the electrical system
in time to do tests to the free-flyer.

We developed the software entirely in ROS2 to facilitate communication among all components and to
organize all the necessary functions, whether for user testing of the systems or for the control algorithms for
the free-flyer and end-effector systems. Even though ROS is a complex tool, with an extremely steep learning
curve, it simplified the work of the software flow and the communication between all the components needed
for the functionality of the robot.

We developed and tested the Model Predictive Controller in a simulation environment using python and the
library CasADi. Though it was not possible to develop intensive testing due to time constraints, we obtained
some good results. The robot always followed the desired trajectory, or went to the position of reference, which
proves that the system is well defined and controllable within the mathematical model presented in 2.1.3.

We redesigned the configuration of the Stewart Platform, which resulted in a threefold increase in the
workspace. This improves massively the effectiveness of the system, as well as the printing capabilities of
Acrobat. We reviewed and adapted all the work carried out in previous projects to fit the new model, allowing

a fast implementation and calibration.

7.2 Obstacles

Acrobat is an involved, multifaceted project encompassing many disciplines. In the beginning, this led
to the team quickly specializing and anxious to learn the tools they needed in order to complete the project.
Whether it was programming control systems in Python and CasADi for the first time, diving into ROS2’s
difficult to approach architecture and hard to understand libraries, attempting and failing to use Gazebo to
perform simulations, learning to use ArUcO vision markers and about camera parameters, tackling the inner
workings of 3D printers, and so on, challenges were expected. Smaller issues like parts not fitting, difficult
soldering, and lengthy waits for components were also expected. Yet, as long as these were the kinds of issues

we were faced with, although ambitious, we were confident we could print something.

50

Ultimately, however, the large unforeseen issues are what led to us failing to fully meet our objectives. The
two main issues were breaking the high pressure air compressor used to pressurize the air bearing system and
failing to arm our flight controller. The former happened almost exactly halfway through the project when we
were testing the air base and noticed that the tank would not pressurize. After sending it to be repaired, this
shifted our priorities to trying to simulate the robot and control system in a Gazebo[16] rather than physically
testing as originally planned. This drew focus away from developing ROS2 for a physical system and towards
making it compatible with Gazebo, greatly delaying testing when a workaround was eventually found. It also
took focus away from printing systems and the manipulator resulting in not enough time to make the systems
truly collaborate to compensate for each of their limitations.

As for the flight controller, while the PixHawk has many advantages as a Flight Control Unit (FCU), it also
comes with a number of limitations. Typically, this family of FCUs is used as a plug-and-play computer and
comes with a software called PX4. This software has numerous safety conditions that are incompatible with
the unique geometry of the robot. The absence of a manual kill-switch, GPS, and vertical actuation propellers
prevented the system from being armed, which in turn blocked the PWM signal output from the Pixhawk.
The only way to overcome the obstacle was to develop a document with all the geometry and configuration
data of Acrobat, with some alterations in the source code. We decided to start using an Arduino, because the
modifications would take a lot of time, because of the efforts that needed to be made to fully comprehend the

software.

7.3 Future Work

Regarding improvements to the current free-flyer controller, we suggest that the implicit Euler method be
adopted to estimate the kinematics of the skeleton. This is a more sophisticated approach than the simple
derivation we applied. Another thing to have in mind is that the orientation references might not be followed in
the most efficient way. Ideally, the robot should not rotate more than 180° for a given reference and the current
controller does not have this constraint. Last but not least, having a real-time estimator for the parameters of
the robot, specially when it comes to its own inertia, would be crucial since this robot is aimed to operate in a
weightless environment. If the robot were to be made fully autonomous, then it should have the ability to
dictate what is changing around him and in itself.

When it comes to electronics, during the test phase of the project the propellers were not as responsive as
we expected them to be. On open-loop test, the propellers were fed with constant PWM signals so they should
have rotated at constant speed. This was not, however, what happened.

Additionally, more RCbenchmark® tests should be performed to guarantee that the data related to the
behaviour of the propellers which was extracted is not flawed. The Cobras may not be all equal from factory so
this could also be taken into account and each motor would have its own separate polynomials for conversion
between force and PWM signals.

For 3D printing to be achievable, careful consideration and investigation is needed on numerous aspects of
the Stewart platform. A primary concern is the availability of affordable servo motors with sufficient resolution

and minimal deadband to achieve the desired printing precision. Should commercially available servos prove

51

inadequate, alternative actuation methods, such as stepper motors commonly employed in FDM printers,
warrant exploration. Furthermore, increasing the accuracy of the calibration procedure should be a priority.
Several paths can be taken to reduce the error of computer vision estimation, from utilizing a stereo camera
system with higher image resolution to adopting more robust calibration pattern like the asymmetric circles
pattern. If this approach proves inadequate for the desired precision, alternative calibration methods, such as
laser-based methods, should also be considered.

Eventually firmware like those mentioned in 5.5.1 will be implemented calling for the development of a slicer
that can create .gcode in 6 DoF. This project provides great potential for the mechanical engineering area of
non-planar 3D printing, considering Acrobat's maneuverability. This research area is new and applied here could
have tremendous benefits for prints giving them rigidity in all directions and eliminating de-lamination risks
associated with planar printing. All in all, this project is not just state of the art in the area of robotics, but in
many disciplines from control to mechanics and aerospace. We hope this technology will continue to develop

and hopefully solve not just the logistics of space, but many of our pressing issues back home on Earth.

52

Bibliography

[1] MIT. Mini MIT satellites rocketing to space station. https://news.mit.edu/2006/mini-satellites.
[2] NASA. Astrobee. https://www.nasa.gov/astrobee/.
[3] Intelligent Robot and Systems Group. Space Cobot. https://space-cobot.isr.tecnico.ulisboa.pt/.

[4] M. L. R. V. Jo3o Vale, Alexandre Rocha. A MULTI-OBJECTIVE OPTIMIZATION APPROACH TO THE
DESIGN OF A FREE-FLYER SPACE ROBOT FOR IN-ORBIT MANUFACTURING AND ASSEMBLY.
AeroBest, 137:517536, 2021. 1D 40.

[5] J. Vale. Design of free-flyer robots for in-space cooperative additive manufacturing. M.Sc. Thesis in
electrical and computer engineering, address = Lisboa, Portugal, month = November, note =, Instituto

Superior Técnico, 2021.

[6] New Way air bearings. What is An Air Bearing? https://www.newwayairbearings.com/technology/
design-basics/what-is-an-air-bearing/.
[7] R. Ventura and P. Roque. Space cobot: modular design of an holonomic aerial robot for indoor microgravity

environments. |[EEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016.

[8] M. Maier. Bidirectional thrust for multirotor mavs with fixed-pitch propellers. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1-8, 2018.
doi:10.1109/1R0S.2018.8593836.

[9] Bryan Morris. Kossel Delta Configuration 3D Printer. https://grabcad.com/library/kossel-delta-

configuration-3d-printer-1.

[10] Z. W. Jianjun He, Hong Gu. Solving the forward kinematics problem of six-DOF Stewart platform using
multi-task Gaussian process. ResearchGate, 2013. doi:10.1177/0954406212444508.

[11] M. Mamoon and Saifullah. Inverse kinematics and path planning of stewart platform using crank
arm actuation system. In Proceedings of 2014 11th International Bhurban Conference on Applied
Sciences Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014, pages 175-181, 2014,
doi:10.1109/IBCAST.2014.6778142.

[12] Rébert Lérincz. Smart Orbiter V3.0 Summary. https://www.orbiterprojects.com/s03/.

[13] klipper3d. Klipper Documentation. https://www.klipper3d.org/.

53

https://news.mit.edu/2006/mini-satellites
https://www.nasa.gov/astrobee/
https://space-cobot.isr.tecnico.ulisboa.pt/
https://www.newwayairbearings.com/technology/design-basics/what-is-an-air-bearing/
https://www.newwayairbearings.com/technology/design-basics/what-is-an-air-bearing/
https://doi.org/10.1109/IROS.2018.8593836
https://grabcad.com/library/kossel-delta-configuration-3d-printer-1
https://grabcad.com/library/kossel-delta-configuration-3d-printer-1
https://doi.org/10.1177/0954406212444508
https://doi.org/10.1109/IBCAST.2014.6778142
https://www.orbiterprojects.com/so3/
https://www.klipper3d.org/

[14] Simulate Before You Build. https://gazebosim.org/home.

[15] T. M. Bocco. High accuracy pose estimation with computer vision. Master's thesis, Politecnico di Torino,

2021. URL https://webthesis.biblio.polito.it/17973/.

[16] Erik van der Zalm. Marlin Firmware. https://marlinfw.org/.

54

https://gazebosim.org/home
https://webthesis.biblio.polito.it/17973/
https://marlinfw.org/

	Executive Summary
	List of Tables
	List of Figures
	Abbreviations
	Nomenclature
	Introduction
	Motivation
	Objectives
	Document Outline

	I Free-Flyer
	Background
	Methodology
	Mechanics and Dynamics
	Space Configuration
	Ground Testing Configuration
	System Dynamics
	Propeller Dynamics

	Control and Navigation
	Navigation
	Vision
	Open-loop test
	Model predictive controller

	Programming and Architecture
	Electronics
	ROS2 Architecture

	Results
	Open Loop testing

	II Parallel Manipulator
	Background
	Methodology
	Mechanics
	Design Parameters
	Inverse Kinematics
	Workspace
	Electronics
	Extruder Electronics

	Vision and Calibration
	Camera Calibration
	Manipulator Calibration

	Results
	Translations Test
	Position Error Evaluation After Manual Calibration

	III Free-Flyer with Manipulator
	Methodology
	Control
	Conclusions
	Obstacles
	Future Work

	Bibliography

